Spectrum

Let us recall the Hooke’s law
\begin{equation}
\label{eq:hooke}
F=-kx.
\end{equation}
Newton’s second law of motion is
\begin{equation}
\label{eq:newton}
F=ma=m\ddot{x},
\end{equation}
where $\ddot{x}=\frac{d^2 x}{dt^2}$. The equations \eqref{eq:hooke} and \eqref{eq:newton} result the equation of a simple harmonic oscillator
\begin{equation}
\label{eq:ho}
m\ddot{x}+kx=0.
\end{equation}
Integrating \eqref{eq:ho} with respect to $x$, we have
$$\int(m\ddot{x}dx+kxdx)=E_0,$$
where $E_0$ is a constant. $d\dot{x}=\ddot{x}dt$ and $\dot{x}d\dot{x}=\dot{x}\ddot{x}dt=\ddot{x}dx$. So,
\begin{align*}
\int(m\ddot{x}dx+kxdx)&=\int(m\dot{x}d\dot{x}+kxdx)\\
&=\frac{1}{2}m\ddot{x}+\frac{1}{2}kx^2.
\end{align*}
Hence, we obtain the conservation law of energy
\begin{equation}
\label{eq:energy}
\frac{1}{2}m\ddot{x}+\frac{1}{2}kx^2=E_0.
\end{equation}
The general solution of \eqref{eq:ho} is
\begin{equation}
\label{eq:hosol}
\begin{aligned}
x(t)&=a\cos\omega t+b\sin\omega t\\
&=\sqrt{a^2+b^2}\sin(\omega t+\theta),
\end{aligned}
\end{equation}
where $a$ and $b$ are constants, $\omega=\sqrt{\frac{k}{m}}$ and $\theta=\tan^{-1}\left(\frac{a}{b}\right)$. From \eqref{eq:energy} and \eqref{eq:hosol}, the total energy $E_0$ is computed to be
$$E_0=\frac{1}{2}m\omega^2(a^2+b^2).$$
This tells us that the total energy of a simple harmonic oscillator is proportional to $a^2+b^2$, the squared amplitude. As seen here, the sawtooth function $f(x)$ is represented as the Fourier series
\begin{align*}
f(x)&=-\frac{2L}{\pi}\sum_{n=1}^\infty\frac{(-1)^n}{n}\sin\left(\frac{n\pi x}{L}\right)\\
&=\frac{2L}{\pi}\left\{\sin\left(\frac{\pi x}{L}\right)-\frac{1}{2}\sin\left(\frac{2\pi x}{L}\right)+\frac{1}{3}\sin\left(\frac{3\pi x}{L}\right)-\cdots\right\}.
\end{align*}
The amplitude $c_n=\frac{2L}{n\pi}$, $n=1,2,3,\cdots$ coincides with twice the angular frequency. $\{c_n\}$ is called the frequency spectrum or the amplitude spectrum.

Leave a Reply

Your email address will not be published. Required fields are marked *