*Definition*. Let $m>0$. We say that $a$ is *congruent* to $b$ modulo $m$ and write $a\equiv b\mod m$ if $m|b-a$.

*Example*. Since $6|7-1$, $1\equiv 7\mod 6$. Since $6|13-1$, $1\equiv 13\mod 6$. Since $6\not|7-2$, $7\not\equiv 2\mod 6$.

*Theorem* 1. Let $a,a’,b,b’,c,d$, and $m$ be integers with $d>0$ and $m>0$. Then

- $a\equiv a\mod m$.
- If $a\equiv b\mod m$ then $b\equiv a\mod m$.
- If $a\equiv b\mod m$ and $b\equiv c\mod m$ then $a\equiv c\mod m$.
- If $a\equiv b\mod m$ and $a’\equiv b’\mod m$ then $a+a’\equiv b+b’\mod m$.
- If $a\equiv b\mod m$ and $a’\equiv b’\mod m$ then $aa’\equiv bb’\mod m$.
- If $a\equiv b\mod m$ and $d|m$ then $a\equiv b\mod d$.

*Proof*.

- Since $m|0=a-a$, $a\equiv a\mod m$.
- Let $a\equiv b\mod m$. Then $m|b-a$ and so $b-a=mk$ for some $k\in\mathbb{Z}$. Since $a-b=m(-k)$ and $-k\in\mathbb{Z}$, then $m|a-b$, i.e., $b\equiv a\mod m$.
- Suppose that $a\equiv b\mod m$ and $b\equiv c\mod m$. Then $m|b-a$ and $m|c-b$, so $$m|(b-a)+(c-b)=c-a.$$ Hence, $a\equiv c\mod m$.
- Suppose that $a\equiv b\mod m$ and $a’\equiv b’\mod m$. Then $m|b-a$ and $m|b’-a’$, so $$m|(b-a)+(b’-a’)=(b+b’)-(a+a’),$$ that is, $a+a’\equiv b+b’\mod m$.
- Suppose that $a\equiv b\mod m$ and $a’\equiv b’\mod m$. Then $m|b-a$ and $m|b’-a’$. Now, $$bb’-aa’=(b-a)a’+(b’-a’)b.$$ Since $m|b-a$ and $m|b’-a’$, $m|bb’-aa’$, i.e., $aa’\equiv bb’\mod m$.
- If $a\equiv b\mod m$ then $m|b-a$. If $d|m$ then $d|b-a$ and so $a\equiv b\mod d$.

*Remark* 1. Properties 1-3 tell us that $\equiv\mod m$ is an equivalence relation on $\mathbb{Z}$. Properties 1-5 tell us that $\equiv\mod m$ is a *congruence relation*, an equivalence relation that preserves operations, on $\mathbb{Z}$. One could easily guess that $\equiv\mod m$ is where the name congruence relation is originated from. For more details about congruence relation, see the reference [1] below.

*Definition*. If $m>0$ and $r$ is the remainder when the division algorithm is used to divide $b$ by $m$, then $r$ is called the *least residue of $b$ modulo $m$*.

*Example*.

- The least residue of $12\mod 7$ is $5$.
- The least residue of $20\mod 4$ is $0$.
- The least residue of $-12\mod 7$ is $2$.
- The least residue of $-3\mod 7$ is $4$.

*Theorem*. Let $m>0$. Then

- If $r$ and $b$ are integers such that $r\equiv b\mod m$ and $0\leq r<m$, then $r$ is the least residue $\mod m$.
- Two integers are congruent $\mod m$ if and only if they have the same least residue $\mod m$.

*Proof*.

- Suppose that $r\equiv b\mod m$. Then $m|b-r$ and so $b=mq+r$ for some $q\in\mathbb{Z}$. If $0\leq r<m$ then by the uniqueness of the quotient and the remainder, $r$ must be the least residue $\mod m$.
- Suppose that $b$ and $b’$ have the same remainder when divided by $m$, say $$b=mq+r\ {\rm and}\ b’=mq’+r$$ for some $q,q’\in\mathbb{Z}$. Then $b-b’=m(q-q’)$ and so $b\equiv b’\mod m$. Conversely, suppose that $b=b’\mod m$ and $b=mq+r$ with $0\leq r<m$. Then $b’=b\mod m$ and $b\equiv r\mod m$, thus $b’\equiv r\mod m$. Therefore by part 1, $r$ is the least residue of $b’\mod m$.

*Example*. Find the least residue of $33\cdot 26^2\mod 31$.

*Solution*: $33\equiv 2\mod 31$ and $26\equiv -5\mod 31$. So, \begin{align*} 33\cdot 26^2&\equiv 2\cdot (-5)^2\mod 31\\ &\equiv 50\mod 31\\ &\equiv 19\mod 31.\end{align*} Since $0\leq 19<31$, the least residue is $19$.

*Theorem* [The Cancellation Theorem]. If $a,b>0$, $x$ and $x’$ are integers such that $(a,b)=1$, then $ax\equiv ax’\mod b$ implies $x\equiv x’\mod b$.

The following example shows that the Cancellation Theorem does not necessarily hold unless the condition $(a,b)=1$ is satisfied.

*Example*. $(2,4)=2\ne 1$. $2\cdot 1\equiv 2\cdot 3\mod 4$ but $1\not\equiv 3\mod4$.

The Cancellation Theorem is a special case of the following more general theorem.

*Theorem*. If $a,b>0$, $x$ and $x’$ are integers such that $(a,b)=d$, then

$ax\equiv ax’\mod b$ if and only if $x\equiv x’\mod b/d$.

*Proof*. \begin{align*} ax\equiv ax’\mod b&\Longrightarrow b|a(x-x’)\\ &\Longrightarrow a(x-x’)=bk\ \mbox{for some}\ k\in\mathbb{Z}\\ &\Longrightarrow \frac{a}{d}(x-x’)=\frac{b}{d}k\\ &\Longrightarrow \frac{b}{d}|\frac{a}{d}(x-x’)\\ &\Longrightarrow \frac{b}{d}|x-x’\ \mbox{since}\ \left(\frac{a}{d},\frac{b}{d}\right)=1\\ &\Longrightarrow x\equiv x’\mod\frac{b}{d}. \end{align*} Conversely, if $x\equiv x’\mod\frac{b}{d}$, then

\begin{align*} x’-x=\frac{b}{d}k\ \mbox{for some}\ k&\Longrightarrow ax’-ax=b\left(\frac{a}{d}\right)k\\ &\Longrightarrow ax\equiv ax’\mod b. \end{align*}

*Theorem*. If $a>0, b$, and $b’$ are integers such that

$b\equiv b’\mod a$, then $(a,b)=(a,b’)$.

*Proof*. \begin{align*} b\equiv b’\mod a&\Longrightarrow b’-b=aq\ \mbox{for some}\ q\in\mathbb{Z}\\ &\Longrightarrow b’=b+aq\\ &\Longrightarrow (a,b)=(a,b’) \end{align*} by Lemma 3 here.

As mentioned in Remark 1, $\equiv\mod m$ is an equivalence relation on $\mathbb{Z}$. For fixed $m$, each equivalence class with respect to $\equiv\mod m$ has one and only one representative between $0$ and $m-1$. Denote by $\mathbb{Z}/m\mathbb{Z}$ or $\mathbb{Z}_m$ the set of all equivalence classes, called the \emph{residue classes}. Then

$$\mathbb{Z}/m\mathbb{Z}={[0],[1],\cdots,[m-1]}.$$

Often $\mathbb{Z}/m\mathbb{Z}$ is written simply as

$$\mathbb{Z}/m\mathbb{Z}={0,1,\cdots,m-1},$$

i.e, those residue classes are represented by their representatives (typically those least residues $\mod m$) unless there is a confusion.

Define the binary operations $+$ and $\cdot$ on $\mathbb{Z}/m\mathbb{Z}$: For any $[a],[b]\in\mathbb{Z}/m\mathbb{Z}$,

$$[a]+[b]:=[a+b],\ [a]\cdot[b]:=[a\cdot b].$$

Then $+$ and $\cdot$ are well-defined due to properties (4) and (5), respectively in Theorem 1.

*Theorem*. $(\mathbb{Z}/m\mathbb{Z},+,\cdot)$ is a commutative ring with unity.

Consider $\mathbb{Z}/9\mathbb{Z}$. Its multiplication table is given by

$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline\cdot & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\hline 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\\hline 2 & 0 & 2 & 4 & 6 & 8 & 1 & 3 & 5 & 7\\\hline 3 & 0 & 3 & 6 & 0 & 3 & 6 & 0 & 3 & 6\\\hline 4 & 0 & 4 & 8 & 3 & 7 & 2 & 6 & 1 & 5\\\hline 5 & 0 & 5 & 1 & 6 & 2 & 7 & 3 & 8 & 4\\\hline

6 & 0 & 6 & 3 & 0 & 6 & 3 & 0 & 6 & 3\\\hline 7 & 0 & 7 & 5 & 3 & 1 & 8 & 6 & 4 & 2\\\hline 8 & 0 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\\\hline\end{array}$$

As one can see clearly, not every nonzero element of $\mathbb{Z}/9\mathbb{Z}$ has a multiplicative inverse. So, $\mathbb{Z}/9\mathbb{Z}$ cannot be a field. However, there are elements of $\mathbb{Z}/9\mathbb{Z}$ that have multiplicative inverses. They are $1,2,4,5,7,8$. As representatives of residue classes, they are all relatively prime to $9$. In fact, the following theorem holds in general.

*Theorem*. The elements of $\mathbb{Z}/m\mathbb{Z}$ which have multiplicative inverses are those which are relatively prime to $m$, i.e., the numbers $a$ for which there exists $b$ with $ab\equiv 1\mod m$ are precisely those $a$ for which $(a,m)=1$.

*Proof*. Let $d=(a,m)$ and suppose that there exists $b\in\mathbb{Z}$ such that $ab\equiv 1\mod m$. Then by property 6 in Theorem 1 $ab\equiv 1\mod d$. Since $d|a$, $d$ must divide $1$, i.e., $d=1$. Conversely, if $(a,m)=1$ then by Bézout’s Lemma (Theorem 5 here), there exist $x,y\in\mathbb{Z}$ such that $ax+my=1$. Choose $b=x$. Then $ab\equiv 1\mod m$.

*Definition*. If $(a,m)=1$ then by *negative power* $a^{-n}\mod m$ we mean the $n$-th powers of the inverse residue class, i.e., it is represented by the $n$-th power of any integer $b$ for which $ab\equiv 1\mod m$.

*Example*. Find $160^{-1}\mod 841$, i.e., the inverse of $160\mod 841$.

*Solution*: First check if $(160,841)=1$ by the Euclidean algorithm.

\begin{align*} 160&=841\cdot 0+160,\\ 841&=160\cdot 5+41,\\ 160&=41\cdot 3+37,\\ 41&=37\cdot 1+4,\\ 37&=4\cdot 9+1. \end{align*} So, $(160,841)=1$. Now by working backward, let us find $b$ such that $160\cdot b\equiv 1\mod 841$. \begin{align*} 1&=37-4\cdot 9\\ &=37-(41-37)9\\ &=10\cdot 37-9\cdot 41\\ &=10(160-3\cdot 41)-9\cdot 41\\ &=10\cdot 160-39\cdot 41\\ &=10\cdot 160-39(841-5\cdot 160)\\ &=205\cdot 160-39\cdot 841.\end{align*} Hence, $b=205=160^{-1}$.

*Corollary*. If $p$ is a prime number then every nonzero residue class has a multiplicative inverse, i.e, $\mathbb{Z}/p\mathbb{Z}$ is a field. We often denote this finite field of $p$ elements by $\mathbb{F}_p$.

*Corollary*. Suppose $0\leq a,b<m$. If $(a,m)=1$ then there exists $x_0\in\mathbb{Z}$ such that $ax_0\equiv b\mod m$ and all solutions of $ax\equiv b\mod m$ are of the form $x=x_0+mn$ for $n$ an integer. If $(a,m)=d$ then there exists $x\in\mathbb{Z}$ such that $ax\equiv b\mod m$ if and only if $d|b$ and in that case our congruence is equivalent to the congruence $a’x\equiv b’\mod m’$, where $a’=a/d,b’=b/d,m’=m/d$.

*Proof*. If $(a,m)=1$ then there exists $a^{-1}\in\mathbb{Z}$ such that $a\cdot a^{-1}\equiv 1\mod m$, so $a\cdot (a^{-1}b)\equiv b\mod m$. Choose $x_0=a^{-1}b$. Since $(a,m)=1$, by Theorem 6 here, all solutions of equation $ax\equiv b\mod m$ or equivalently $ax+mq=b$ for some $q\in\mathbb{Z}$ are given in the form $$x=x_0+mn$$ for some $n\in\mathbb{Z}$. Let $(a,m)=d$. If there exists $x\in\mathbb{Z}$ such that $ax\equiv b\mod m$, then clearly $d|b$. Conversely, suppose that $d|b$. Since $(a/d,m/d)=1$, there exists $x\in\mathbb{Z}$ such that $\frac{a}{d}x\equiv\frac{b}{d}\mod\frac{m}{d}$ and this is clearly equivalent to $ax\equiv b\mod m$.

*References*:

- Stanley Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, 1981