Lorentz Invariance of Relativistic Equations

Relativistic equations are the equations whose solutions describe certain relativistic motions. Such equations include wave equation, Klein-Gordon equation, Dirac equation etc. A relativistic equation must describe the same physical motion independent of frames i.e. whether an observer is in a frame at rest or in a frame moving at the constant speed $v$. For this reason, all those relativistic equations are required to be invariant under the Lorentz transformation. We show that the wave equation
\begin{equation}
\label{eq:waveeq}
-\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2}+\frac{\partial^2\psi}{\partial x^2}=0
\end{equation}
is Lorentz invariant. Here we consider only 1-dimensional wave equation for simplicity. Wave equation has two kinds of solutions. Given boundary conditions its solution describes a vibrating string in which case the boundary conditions are the ends of the string that are held fixed. This is called Fourier’s solution. The other type can be obtained by not imposing any boundary conditions. The resulting solution would describe a propagating wave in vacuum spacetime. Such a propagating wave includes electromagnetic waves. Light is also an electromagnetic wave. This is called a d’Alembert’s solution. The proof is easy. All that’s required is the chain rule.

First let us recall the Lorenz transformation
$$t’=\frac{t-\frac{v}{c^2}x}{\sqrt{1-\frac{v^2}{c^2}}},\ x’=\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}}$$
Using the chain rule we find
\begin{align*}
\frac{\partial}{\partial x}&=\frac{\partial}{\partial x’}\frac{\partial x’}{\partial x}+\frac{\partial}{\partial t’}\frac{\partial t’}{\partial x}\\
&=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}\frac{\partial}{\partial x’}-\frac{v}{c^2\sqrt{1-\frac{v^2}{c^2}}}\frac{\partial}{\partial t’}\\
\frac{\partial}{\partial t}&=\frac{\partial}{\partial x’}\frac{\partial x’}{\partial t}+\frac{\partial}{\partial t’}\frac{\partial t’}{\partial t}\\
&=-\frac{v}{\sqrt{1-\frac{v^2}{c^2}}}\frac{\partial}{\partial x’}+\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}\frac{\partial}{\partial t’}
\end{align*}
Applying the chain rule again,
\begin{align*}
\frac{\partial^2}{\partial x^2}&=\frac{1}{1-\frac{v^2}{c^2}}\frac{\partial^2}{\partial {x’}^2}+\frac{v^2}{c^4\left(1-\frac{v^2}{c^2}\right)}\frac{\partial^2}{\partial {t’}^2}-2\frac{v}{c^2\left(1-\frac{v^2}{c^2}\right)}\frac{\partial^2}{\partial t’\partial x’}\\
\frac{\partial^2}{\partial t^2}&=\frac{v^2}{1-\frac{v^2}{c^2}}\frac{\partial^2}{\partial {x’}^2}+\frac{1}{1-\frac{v^2}{c^2}}\frac{\partial^2}{\partial {t’}^2}-2\frac{v}{1-\frac{v^2}{c^2}}\frac{\partial^2}{\partial t’\partial x’}
\end{align*}
It follows that
$$-\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2}+\frac{\partial^2\psi}{\partial x^2}=-\frac{1}{c^2}\frac{\partial^2\psi}{\partial {t’}^2}+\frac{\partial^2\psi}{\partial {x’}^2}$$
Therefore, the wave equation is Lorentz invariant.

Would the wave equation be invariant under the Galilean transformation? The answer is no. Recall the Galilean transformation
$$t’=t,\ x’=x-vt$$
We find that under the Galiean transformation
$$-\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2}+\frac{\partial^2\psi}{\partial x^2}=-\frac{1}{c^2}\frac{\partial^2\psi}{\partial {t’}^2}+\left(1-\frac{v^2}{c^2}\right)\frac{\partial^2\psi}{\partial {x’}^2}+\frac{2v}{c^2}\frac{\partial^2\psi}{\partial t’\partial x’}$$
Hence obvisouly the wave equation is not invariant under the Galiean transformation. This implies that there is no light in Euclidean space.

Food for Thought. You can also show that the heat equation (1-dimensional)
$$-\frac{\partial u}{\partial t}+\alpha\frac{\partial^2 u}{\partial x^2}=0$$
is not Lorentz invariant. Is there any relativistic version of the heat equation? There are models of relativistic heat conduction but in my opinion they are more like mathematically augmented equations rather than they are derived in a physically meaningful way. So my question is can we derive a physically meaningful equation of relativistic heat conduction? One may wonder if there is actually any physical phenomenon that exhibits a relativistic heat conduction. As far as I know there isn’t any observed one yet. I speculate though that one may observe a relativistic heat conduction from an extreme physical phenomenon such as a quasar jet.

Update: Of course the Lorentz invariance can be also shown using the Lorentz transformation \begin{align*}t’&=\cosh\phi t-\sinh\phi x\\x’&=-\sinh\phi t+\cosh\phi x\end{align*}

Update: For 3-dimensional case the wave equation is given by $$\Box\psi=0$$
where $\Box=-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}+\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}$ is the d’Alembert’s operator. This case is actually simpler to show its Lorentz invariance. Note $\Box=\nabla\cdot \nabla$ where $\nabla=\frac{1}{c}\frac{\partial}{\partial t}\hat e_0+\frac{\partial}{\partial x}\hat e_x+\frac{\partial}{\partial y}\hat e_2+\frac{\partial}{\partial z}\hat e_3$. Since $\nabla$ is a 4-vector (rigorously it is not a vector but an operator but can be treated as a vector), its squared norm $\Box$ has to be Lorentz invariant.

Absolute Value Equations and Absolute Value Inequalities

Absolute Value Equations

First let us review the definition of absolute value $|\cdot |$.

Definition. The absolute value of $|a|$ of a number $a$ is defined by
$$|a|=\left\{\begin{array}{ccc}
a & \mbox{if} & a\geq 0\\
-a & \mbox{if} & a<0
\end{array}\right.$$
Interestingly a lot of students get confused with the definition while they have no problem with getting the absolute of a particular number correctly like $|2|=2$ and $|-2|=2$. That’s because of the way they were taught. Many teachers teach absolute value like some sort of magic: “Hey guys what absolute value does is whatever number you put into between the two vertical lines it becomes positive.” While this may be easy to understand for students this is not an action performed in mathematics. In algebra whatever action you do should be carried out by operations such as $+$, $-$, $\times$, or $\div$. In terms of an operation what happens to $|-2|=2$ is in fact that $|-2|=-(-2)=2$. It is not abracadabra. For a letter $a$ representing a number, if $a<0$, to make it positive $|a|=-a$. Students get confused because $-a$ looks like negative but it is not. Remember the condition $a<0$. So $-a$ is actually positive. So don’t be deceived by its look.

Now we are ready to discuss absolute value equations. All you need to know is
\begin{equation}
\label{eq:abs}
|x|=k\ \mbox{if and only if}\ x=\pm k
\end{equation}
for $k>0$. If $k=0$, $x=0$. If $k<0$, obviously there is no solution.

Example. Solve the equation
$$|2x-5|=3$$

Solution. By \eqref{eq:abs}, we get the two linear equations $2x-5=\pm 3$. Solving these equation, we find $x=4$ or $x=1$.

Absolute value equations are related to quadratic equations. If you square the above equation, we get the quadratic equation
$$x^2-5x+4=0$$
Solving this quadratic equation, we of course obtain the same solutions. In practice why bother? Solving absolute value equations directly is easier. Note though that absolute value equations are actually obtained when you solve quadratic equations by the method of completing the square.

Absolute Value Inequalities

For absolute value inequalities all you have to know is the following picture.

Figure 1. Absolute Value Inequalities

From Figure 1 we can read for $k>0$

  1.  $|x|<k$ if and only if $-k<x<k$.
  2. $|x|\leq k$ if and only if $-k\leq x\leq k$.
  3. $|x|>k$ if and only if $x<-k$ or $x>k$.
  4. $|x|\geq k$ if and only if $|x|\leq -k$ or $|x|\geq k$.

Example. Solve the inequality $|x-5|<2$.

Solution. $|x-5|<2$ implies that $-2<x-5<2$ i.e. $3<x<7$.

Example. Solve the inequality $|3x+2|\geq 4$.

Solution. $|3x+2|\geq 4$ implies that $3x+2\leq -4$ or $3x+2\geq 4$ i.e. $x\leq-2$ or $x\geq\frac{2}{3}$.

Lorentz Transformation 3

Let $\begin{pmatrix}
t\\
x
\end{pmatrix}$ be a vector in $tx$-plane and $\begin{pmatrix}
t’\\
x’
\end{pmatrix}$ denote its rotation by a hyperbolic angle $\phi$. Then as we have seen here we have:
\begin{equation}
\begin{aligned}
t’&=t\cosh\phi-x\sinh\phi\\
x’&=-t\sinh\phi+x\cosh\phi
\end{aligned}\label{eq:boost1}
\end{equation}
$t’$-axis ($x’=0$) is moving at a constant speed
\begin{equation}
\label{eq:velocity1}
v=\frac{x}{t}=\frac{\sinh\phi}{\cosh\phi}=\tanh\phi\end{equation}
while $x’$-axis ($t’=0$) is moving at a constant speed
\begin{equation}
\label{eq:velocity2}
v=\frac{x}{t}=\frac{\cosh\phi}{\sinh\phi}=\coth\phi
\end{equation}
This means that the time and spacial axes scissor together and hence the speed of light remains the same regardless of the coordinate transformation as illustrated in Figure 1. The picture in Figure 1 is called the spacetime diagram.

Figure 1. Spacetime Diagram

From Euclidean perspective, $t’$ and $x’$ do not appear to be orthogonal. However, from Lorentzian perspective they are orthogonal. To see that let $e_0=\begin{pmatrix}
1\\
0 \end{pmatrix}$ and $e_1=\begin{pmatrix}
0\\
1
\end{pmatrix}$. Also let $e_0’$ and $e_1’$ be the rotations of $e_0$ and $e_1$ by the hyperbolic angle $\phi$, respectively. Then by \eqref{eq:boost1} we have
$$e_0’=\begin{pmatrix}
\cosh\phi\\
-\sinh\phi
\end{pmatrix},\ e_1’=\begin{pmatrix}
-\sinh\phi\\
\cosh\phi
\end{pmatrix}$$
Now \begin{align*}\langle {e_0}’,e_1’\rangle&=(\cosh\phi\ -\sinh\phi)\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}\begin{pmatrix}
-\sinh\phi\\
\cosh\phi
\end{pmatrix}\\&=\cosh\phi\sinh\phi-\sinh\phi\cosh\phi=0\end{align*} So $e_0’$ and $e_1’$ are orthogonal.

\eqref{eq:boost1} with \eqref{eq:velocity1} can be written as
\begin{align*}
t’&=\cosh\phi(t-vx)\\
x’&=\cosh\phi(x-vt)
\end{align*}
Using the well-known identy $\cosh^2\phi-\sinh^2\phi=1$, we find $\cosh\phi=\frac{1}{\sqrt{1-v^2}}$. Therefore, \eqref{eq:boost1} can be written in terms of $t,x,t’,x’,v$ as
\begin{equation}
\begin{aligned}
t’&=\frac{t-vx}{\sqrt{1-v^2}}\\
x’&=\frac{x-vt}{\sqrt{1-v^2}}
\end{aligned}\label{eq:boost2}
\end{equation}
Remember that we assumed the speed of light to be $c=1$ for simplicity. For the real $c$ value \eqref{eq:boost2} turns into
\begin{equation}
\begin{aligned}
t’&=\frac{t-\frac{v}{c^2}x}{\sqrt{1-\frac{v^2}{c^2}}}\\
x’&=\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}}
\end{aligned}\label{eq:boost3}
\end{equation}
In physics textbooks, \eqref{eq:boost3} is introduced as the Lorentz transformation. If $v\ll c$ meaning $v$ is significantly slower than the speed of light (such a motion is called a non-relativistic motion), \eqref{eq:boost3} is effectively the Galilean transformation
\begin{equation}
\begin{aligned}
t’&=t\\
x’&=x-vt
\end{aligned}\label{eq:galilean}
\end{equation}
for Newtonian mechanics in Euclidean space. $t’=t$ means that time is independent of the relative motion of different observers and we already know this is the case of Newtonian mechanics. The Galilean transformation \eqref{eq:galilean} can be also obtained by taking the limit $c\to \infty$. This indicates that in Newtonian mechanics the speed of light is presumed to be infinity.

Lines

A line in the plane is determined by two points meaning there is only one line passing through two given points in the plane. But it could be determined by some other quantities. An important such quantity is slope. Slope measures steepness of a line and it is defined by $\frac{\mbox{rise}}{\mbox{run}}$. If two points $(x_1,y_1)$ and $(x_2,y_2)$ are known, the slope $m$ of the line through the two points is
\begin{equation}
\label{eq:slope}
m=\frac{y_2-y_1}{x_2-x_1}
\end{equation}

Example. Find the slope of the line passing through the points $P(2,1)$ and $Q(8,5)$.

Solution. Note that it really doesn’t matter which ones you label as $(x_1,y_1)$ and $(x_2,y_2)$. Here we choose $(x_1,y_1)=(2,1)$ and $(x_2,y_2)=(8,5)$. Using \eqref{eq:slope} we find the slope
$$m=\frac{5-1}{8-2}=\frac{4}{6}=\frac{2}{3}$$

A cool thing to see is that certain geometric objects can be described by equations so we can study geometry in terms of algebra. Such objects include lines, circles, parabolas, elipses, and so on so forth. Why is this cool? Because algebra is much easier than geometry. A branch of mathematics that studies geometric objects in terms of algebra is analytic geometry and this is further generalized into another branch called algebraic geometry.

So how do we write an equation for a given line? Well, we already have it. The equation \eqref{eq:slope}. But in order to write it as an equation we need to tweak it a bit. An equation relates an arbitrary point $(x,y)$ on the line to some known quantities. So let’s say slope $m$ and a point $(x_1,y_1)$ is known. Then by \eqref{eq:slope} we get
$$m=\frac{y-y_1}{x-x_1}$$
This is the equation of the line with slope $m$ passing through a point $(x_1,y_1)$. But to make it look a bit nicer we rewrite it as
\begin{equation}
\label{eq:line}
y-y_1=m(x-x_1)
\end{equation}

Example. Find the equation of the line through $(-1,3)$ with slope $-\frac{1}{2}$ and sketch the line.

Solution. Using \eqref{eq:line} we find
$$y-3=-\frac{1}{2}(x-(-1))$$
Solving this for $y$ we obtain
$$y=-\frac{1}{2}x+\frac{5}{2}$$
There are two ways to sketch the line. One is using the slope and the given point. Slope being $-\frac{1}{2}$ means that when $x$ moves 2 units to the right its corresponding $y$ moves 1 unit downward. Apply this to the point $(-1,3)$ we will land at another point which is $(1,2)$. You draw the line passing through the two points $(-1,3)$ and $(1,2)$ as shown in Figure 1.

Figure 1. Drawing a line

The other way to sketch the line is to find another point. An easy choice is to find the $x$-intercept by setting $y=0$. The $x$-intercept is $(5,0)$. You draw the line through $(-1,3)$ and $(5,0)$.

As a special case if the slope $m$ and the $y$-intercept $(0,b)$ are given, the equation \eqref{eq:line} becomes
\begin{equation}
\label{eq:line2}
y=mx+b
\end{equation}
Even though the $y$-intercept is not known in fact \eqref{eq:line2} can be also used to find the equation of the line in the previous example. Since $m=-\frac{1}{2}$, we set
$$y=-\frac{1}{2}x+b$$
The line is passing through $(-1,3)$ we have
$$3=-\frac{1}{2}(-1)+b$$
Solving this for $b$ we find $b=\frac{5}{2}$.

Parallel and Perpendicular Lines

It’s obvious that two lines with slopes $m_1$ and $m_2$ are parallel if $m_1=m_2$. What’s not so obvious however is the following property.

Two lines with slopes $m_1$ and $m_2$ are perpendicular if $m_1m_2=-1$.

We will not mind the proof of this property here.

Example. Find an equation of the line through $(5,2)$ that is parallel to the line $y=-\frac{2}{3}x-\frac{5}{6}$.

Solution. The slope is $m=-\frac{2}{3}$. Since this line is passing through the point $(5,2)$, by \eqref{eq:line} the equation is
$y-2=-\frac{2}{3}(x-5)$. This simplifies to
$y=-\frac{2}{3}x+\frac{16}{3}$.

Example. Find an equation of the line through $(5,2)$ that is perpendicular to the line $y=-\frac{2}{3}x-\frac{5}{6}$.

Solution. The slope is $m=\frac{3}{2}$. Since the line is passing through $(5,2)$, by \eqref{eq:line} the equation is
$y-2=\frac{3}{2}(x-5)$ which simplifies to $y=\frac{3}{2}x-\frac{11}{2}$.

Figure 2. Two perpendicular lines y=-(2/3)x-5/6 (in blue) and y=(3/2)x-11/2 (in red)

What are Lorentz Transformations? 2

This time we consider spacetime $\mathbb{R}^{3+1}$ with the Minkowski metric $ds^2=-(dt)^2+(dx)^2+(dy)^2+(dz)^2$. (Here we set the speed of light in vacuum $c=1$). For each time slice i.e $t$=constant we get Euclidean 3-space and from what we know about Euclidean space there are rotations in the coordinate planes, the $xy$-plane, $yz$-plane, and $xz$-plane. What we have no clue about is rotations (from Euclidean perspective) in the $tx$-plane, $ty$-plane, and $tz$-plane. For that we consider $\mathbb{R}^{1+1}$ with metric $ds^2=-(dt)^2+(dx)^2$. Let $v,w$ be two tangent vectors to $\mathbb{R}^{1+1}$. Then $v,w$ are written as
\begin{align*}
v&=v_1\frac{\partial}{\partial t}+v_2\frac{\partial}{\partial x}\\
w&=w_1\frac{\partial}{\partial t}+w_2\frac{\partial}{\partial x}
\end{align*}
$ds^2$ acting on them results the inner product:
$$\langle v,w\rangle=ds^2(v,w)=-v_1w_1+v_2w_2=v^t\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}w$$
The last expression is obtained by considering $v$ and $w$ as column vectors (the reason we can do this is because every tangent plane to $\mathbb{R}^{1+1}$ is isomorphic to the vector space $\mathbb{R}^{1+1}$). Let $A$ be an isometry of $\mathbb{R}^{1+1}$. Let $v’=Av$ and $w’=Aw$. Then
\begin{align*}
\langle v’,w’\rangle&={v’}^t\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}w’\\
&=(Av)^t\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}(Aw)\\
&=v^tA^t\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}Aw
\end{align*}
In order for $A$ to be an isometry i.e. $\langle v’,w’\rangle=\langle v,w\rangle$ we require that $A^t\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}A=\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}$. A $2\times 2$ matrix $A$ satisfying
\begin{equation}
\label{eq:lo}
A^t\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}A=\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}
\end{equation}
is called an Lorentz orthogonal matrix. More generally a $4\times 4$ Lorentz orthogonal matrix $A$ satisfies
\begin{equation}
\label{eq:lo2}
A^t\begin{pmatrix}
-1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}A=\begin{pmatrix}
-1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}
\end{equation}
Let $A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ be a Lorentz orthogonal matrix. We also assume that $\det A=1$ i.e. $A$ is a special Lorentz orthogonal group. Then we get the following set of equations
\begin{equation}
\begin{aligned}
-a^2+c^2&=-1\\
-ab+cd&=0\\
-b^2+d^2&=1\\
ad-bc&=1
\end{aligned}
\label{eq:slo}
\end{equation}
Solving the equations in \eqref{eq:slo} simultaneously we obtain $A=\begin{pmatrix}
a & b\\
b & a
\end{pmatrix}$ with $a^2-b^2=1$. Hence one may choose $a=\cosh\phi$ and $b=-\sinh\phi$. Now we find a rotation matrix in the $tx$-plane
\begin{equation}
\label{eq:boost}
\begin{pmatrix}
\cosh\phi & -\sinh\phi\\
-\sinh\phi & \cosh\phi
\end{pmatrix}
\end{equation}
A friend of mine, a retired physicist named Larry has to confirm everything by actually calculating. For being a lazy mathematician I try to avoid messy calculations as much as possible, instead try to confirm things indirectly (and more elegantly). In honor of my dear friend let us play Larry. Let $\begin{pmatrix} t\\
x \end{pmatrix}$ be a vector in the $tx$-plane and $\begin{pmatrix} t’\\
x’ \end{pmatrix}$ denote its rotation by an angle $\phi$. (This $\phi$ is not really an angle and it could take any real value. It is called a hyperbolic angle.)
$$\begin{pmatrix} t’\\
x’ \end{pmatrix}=\begin{pmatrix}
\cosh\phi & -\sinh\phi\\
-\sinh\phi & \cosh\phi
\end{pmatrix}\begin{pmatrix} t\\
x \end{pmatrix}$$
i.e.
\begin{align*}
t’&=\cosh\phi t-\sinh\phi x\\
x’&=-\sinh\phi t+\cosh\phi x
\end{align*}
and
\begin{align*}
dt’&=\cosh\phi dt-\sinh\phi dx\\
dx’&=-\sinh\phi dt+\cosh\phi dx
\end{align*}
Using this we can confirm that
$$(ds’)^2=-(dt’)^2+(dx’)^2=-(dt)^2+(dx)^2=ds^2$$
i.e. \eqref{eq:boost} is in fact an isometry which is called a Lorentz boost. In spacetime $\mathbb{R}^{3+1}$ there are three boosts, one of which is
$$\begin{pmatrix}
\cosh\phi & -\sinh\phi & 0 & 0\\
-\sinh\phi & \cosh \phi& 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}$$
This is a rotation (boost) in the $tx$-plane. In addition, there are regular rotations one of which is
$$\begin{pmatrix}
1 & 0 & 0 & 0\\
0 & \cos\theta & -\sin\theta & 0\\
0 & \sin\theta & \cos\theta & 0\\
0 & 0 & 0 & 1
\end{pmatrix}$$
This is a rotation by the angle $\theta$ in the $xy$-plane. The three boosts and three rotations form generators of the Lorentz group $\mathrm{O}(3,1)$, the set of all $4\times 4$ Lorentz orthogonal matrices, which is a Lie group under matrix multiplication. As a topological space $\mathrm{O}(3,1)$ has four connected components depending on whether Lorentz transformations are time-direction preserving or orientation preserving. The component that contains the identity transformation consists of Lorentz transformations that preserve both the time-direction and orientation. It is denoted by $\mathrm{SO}^+(3,1)$ and called the restricted Lorentz group. There are 4 translations along the coordinate axes in $\mathbb{R}^{3+1}$. The three boosts, three rotations and four translations form generators of a Lie group called the Poincaré group. Like Euclidean motion group elements of the Poincaré group are affine transformations. Such an affine transformation would be given by $v\longmapsto Av+b$ where $A$ is a Lorentz transformation and $b$ is a fixed four-vector. The Lorentz group is not a (Lie) subgroup of the Poincaré group as the elements of the Poincaré group are not matrices. Note however that the Poincaré group acts on $\mathbb{R}^{3+1}$ in an obvious way and the Lorentz group fixes the origin under the group action, hence the Lorentz group is the stabilizer subgroup (also called the isotropy group) of the Poincaré group with respect to the origin.

I will finish this lecture with an interesting comment from geometry point of view. The spacetime $\mathbb{R}^{3+1}$ can be identified with the linear space $\mathscr{H}$ of all $2\times 2$ Hermitian matrices via the correspondence
\begin{align*}
v=(t,x,y,z)\longleftrightarrow\underline{v}&=\begin{pmatrix}
t+z & x+iy\\
x-iy & t-z
\end{pmatrix}\\
&=t\sigma_0+x\sigma_1+y\sigma_2+z\sigma_3
\end{align*}
where
$$\sigma_0=\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix},\ \sigma_1=\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix},\ \sigma_2=\begin{pmatrix}
0 & i\\
-i & 0
\end{pmatrix},\ \sigma_3=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}$$
are the Pauli spin matrices. The Lie group $\mathrm{SL}(2,\mathbb{C})$ acts on $\mathbb{R}^{3+1}$ isometrically via the group action:
$$\mu: \mathrm{SL}(2,\mathbb{C})\times\mathbb{R}^{3+1}\longrightarrow\mathbb{R}^{3+1};\ \mu(g,v)=gvg^\dagger$$
where $g^\dagger={\bar g}^t$. The action induces a double covering $\mathrm{SL}(2,\mathbb{C})\stackrel{2:1}{\stackrel{\longrightarrow}{\rho}}\mathrm{SO}^+(3,1)$. Since $\ker\rho=\{\pm I\}$, $\mathrm{PSL}(2,\mathbb{C})=\mathrm{SL}(2,\mathbb{C})/\{\pm I\}=\mathrm{SO}^+(3,1)$. $\mathrm{SL}(2,\mathbb{C})$ is simply-connected, so it is the universal covering of $\mathrm{SO}^+(3,1)$.

I will discuss some physical implications of Lorentz transformations next time.