Analytic Continuation

The function $f(z)=\displaystyle\frac{1}{1+z}$ has an isolated singularity at $z=-1$. It has the Maclaurin series representation

$$f(z)=\sum_{n=0}^\infty(-1)^nz^n$$
for $|z|<1$. The power series $f_1(z)=\displaystyle\sum_{n=0}^\infty(-1)^nz^n$ converges only on the open unit disk $D_1:\ |z|<1$. For instance, the series diverges at $z=\frac{3}{2}i$ i.e. $f_1\left(\frac{3}{2}i\right)$ is not defined. The first 25 partial sums of the series $f_1\left(\frac{3}{2}i\right)$ are listed below and they do not appear to be approaching somewhere.

S[1] = 1.
S[2] = 1. – 1.500000000 I
S[3] = -1.250000000 – 1.500000000 I
S[4] = -1.250000000 + 1.875000000 I
S[5] = 3.812500000 + 1.875000000 I
S[6] = 3.812500000 – 5.718750000 I
S[7] = -7.578125000 – 5.718750000 I
S[8] = -7.578125000 + 11.36718750 I
S[9] = 18.05078125 + 11.36718750 I
S[10] = 18.05078125 – 27.07617188 I
S[11] = -39.61425781 – 27.07617188 I
S[12] = -39.61425781 + 59.42138672 I
S[13] = 90.13208008 + 59.42138672 I
S[14] = 90.13208008 – 135.1981201 I
S[15] = -201.7971802 – 135.1981201 I
S[16] = -201.7971802 + 302.6957703 I
S[17] = 455.0436554 + 302.6957703 I
S[18] = 455.0436554 – 682.5654831 I
S[19] = -1022.848225 – 682.5654831 I
S[20] = -1022.848225 + 1534.272337 I
S[21] = 2302.408505 + 1534.272337 I
S[22] = 2302.408505 – 3453.612758 I
S[23] = -5179.419137 – 3453.612758 I
S[24] = -5179.419137 + 7769.128706 I
S[25] = 11654.69306 + 7769.128706 I

Also shown below are the graphics of partial sums of the series $f_1\left(\frac{3}{2}i\right)$.

The first 10 partial sums

The first 10 partial sums

The first 20 partial sums

The first 20 partial sums

The first 30 partial sums

The first 30 partial sums

Let us expand $f(z)=\displaystyle\frac{1}{1+z}$ at $z=i$. Then we obtain
\begin{align*}
f(z)&=\frac{1}{1+z}\\
&=\frac{1}{1+i}\cdot\frac{1}{1+\frac{z-i}{1+i}}\\
&=\sum_{n=0}^\infty (-1)^n\frac{(z-i)^n}{(1+i)^{n+1}}
\end{align*}
for $|z-i|<\sqrt{2}$. Let $f_2(z)=\displaystyle\sum_{n=0}^\infty (-1)^n\frac{(z-i)^n}{(1+i)^{n+1}}$. This series converges only on the open disk $D_2:\ |z-i|<\sqrt{2}$, in particular at $z=\frac{3}{2}i$ and $f_2\left(\frac{3}{2}i\right)=f\left(\frac{3}{2}i\right)=\frac{4}{13}-\frac{6}{13}i$. The first 25 partial sums of the series $f_2\left(\frac{3}{2}i\right)$ are listed below and it appears that they are approaching a number. In fact, they are approaching the complex number $f\left(\frac{3}{2}i\right)=\frac{4}{13}-\frac{6}{13}i$.

S[1] = 0.5000000000 – 0.5000000000 I
S[2] = 0.2500000000 – 0.5000000000 I
S[3] = 0.3125000000 – 0.4375000000 I
S[4] = 0.3125000000 – 0.4687500000 I
S[5] = 0.3046875000 – 0.4609375000 I
S[6] = 0.3085937500 – 0.4609375000 I
S[7] = 0.3076171875 – 0.4619140625 I
S[8] = 0.3076171875 – 0.4614257812 I
S[9] = 0.3077392578 – 0.4615478516 I
S[10] = 0.3076782227 – 0.4615478516 I
S[11] = 0.3076934814 – 0.4615325928 I
S[12] = 0.3076934814 – 0.4615402222 I
S[13] = 0.3076915741 – 0.4615383148 I
S[14] = 0.3076925278 – 0.4615383148 I
S[15] = 0.3076922894 – 0.4615385532 I
S[16] = 0.3076922894 – 0.4615384340 I
S[17] = 0.3076923192 – 0.4615384638 I
S[18] = 0.3076923043 – 0.4615384638 I
S[19] = 0.3076923080 – 0.4615384601 I
S[20] = 0.3076923080 – 0.4615384620 I
S[21] = 0.3076923075 – 0.4615384615 I
S[22] = 0.3076923077 – 0.4615384615 I
S[23] = 0.3076923077 – 0.4615384616 I
S[24] = 0.3076923077 – 0.4615384615 I
S[25] = 0.3076923077 – 0.4615384615 I

The following graphics shows that the real parts of the partial sums of the series $f_2\left(\frac{3}{2}i\right)$ are approaching $\frac{3}{14}$ (blue line).

The real parts of the first 25 partial sums

The real parts of the first 25 partial sums

The next graphics shows that the imaginary parts of the partial sums of the series $f_2\left(\frac{3}{2}i\right)$  are approaching $-\frac{6}{13}$ (blue line).

The imaginary parts of the first 25 partial sums

The imaginary parts of the first 25 partial sums

Also shown below is the graphics of the first 25 partial sums of the series $f_2\left(\frac{3}{2}i\right)$. They are approaching the complex number $f\left(\frac{3}{2}i\right)=\frac{4}{13}-\frac{6}{13}i$ (the intersection of horizontal and vertical blue lines).

The first 25 partial sums

The first 25 partial sums

Note that $f_1(z)=f_2(z)$ on $D_1\cap D_2$. Define $F(z)$ as

$$F(z)=\left\{\begin{array}{ccc}
f_1(z) & \mbox{if} & z\in D_1,\\
f_2(z) & \mbox{if} & z\in D_2.
\end{array}\right.$$

Analytic continuation

Analytic continuation

Then $F(z)$ is analytic in $D_1\cup D_2$. The function $F(z)$ is called the analytic continuation into $D_1\cup D_2$ of either $f_1$ or $f_2$, and $f_1$ and $f_2$ are called elements of $F$. The function $f_1(z)$ can be continued analytically to the punctured plane $\mathbb{C}\setminus\{-1\}$ and the function $f(z)=\frac{1}{1+z}$ is indeed the analytic continuation into $\mathbb{C}\setminus\{-1\}$ of $f_1$. In general, whenever analytic continuation exists it is unique.

Leave a Reply

Your email address will not be published. Required fields are marked *