The Lorentz Group

Let $\mathbb{L}^4$ be $\mathbb{R}^4$ with the Lorentzian inner product $\langle\ ,\ \rangle$ defined by
$$\langle v,w\rangle=-v^0w^0+v^1w^1+v^2w^2+v^3w^3$$
for $v={}^t(v^0,v^1,v^2,v^3),w={}^t(w^0,w^1,w^2,w^3)\in\mathbb{R}^4$. In particular,
$$||v||^2=-(v^0)^2+(v^1)^2+(v^2)^2+(v^3)^2.$$
$\mathbb{L}^4$ is called the Minkowski $4$-spacetime or simply 4-spacetime. In physics, $\mathbb{L}^4$ is commonly denoted by $\mathbb{R}^{3+1}$. Another common notation for $\mathbb{L}^4$ in differential geometry is $\mathbb{R}^4_1$.

A linear transformation $A:\mathbb{L}^4\longrightarrow\mathbb{L}^4$ is called a Lorentz transformation if it is a Lorentzian isometry i.e. a Lorentzian inner product preserving map. Note that $\langle v,w\rangle$ can be written in matrix form as
$$\langle v,w\rangle={}^tv(g_{ij})w,$$
where
$$(g_{ij})=\begin{pmatrix}
-1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}.$$
The matrix $(g_{ij})$ is called a Lorentzian metric tensor. The set of all Lorentz transformations forms a Lie group called Lorentz group and is denoted  by $\mathrm{O}(3,1)$:
$$\mathrm{O}(3,1)=\{A\in\mathrm{GL}(\mathbb{L}^4): {}^tA(g_{ij})A=(g_{ij})\}.$$
$\mathrm{O}(3,1)$ contains conventional rotations such as one in the $x^1-x^2$ plane
$$\begin{pmatrix}
1 & 0 & 0 & 0\\
0 & \cos\theta & -\sin\theta & 0\\
0 & \sin\theta & \cos\theta & 0\\
0 & 0 & 0 & 1
\end{pmatrix},\ 0\leq\theta<2\pi$$
plus Lorentz boots which may be regarded as rotation between space and time directions. An example of boosts is
$$\begin{pmatrix}
\cosh\phi & \sinh\phi & 0 &  0\\
\sinh\phi & \cosh\phi & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix},\ -\infty<\phi<\infty.$$
Lorentz transformations leave the origin (present) fixed due to linearity. The set of all isometries of $\mathbb{L}^4$ constains Lorentz transformations and translations. It is a Lie group called Poincaré group.

For $A\in\mathrm{O}(3,1)$, $\det A=\pm 1$. Those Lorentz transformations with determinant 1 are spatial orientation (parity) preserving transformations. They form a Lie subgroup of $\mathrm{O}(3,1)$ and is denoted by $\mathrm{SO}(3,1)$:
$$\mathrm{SO}(3,1)=\{A\in\mathrm{O}(3,1): \det A=1\}.$$
$\mathrm{SO}(3,1)$ has two connected components. ($\mathrm{O}(3,1)$ has four connected components.) The identiy componenent of $\mathrm{SO}(3,1)$ is denoted by $\mathrm{SO}^+(3,1)$. $\mathrm{SO}^+(3,1)$ is the group of both time orientation and parity preserving Lorentz transformations.

Leave a Reply

Your email address will not be published. Required fields are marked *