Frame Fields

In Euclidean 3-space \mathbb{E}^3, we have naturally defined frame U_1(p), U_2(p), U_3(p) for each p\in\mathbb{E}^3, where U_1=(1,0,0), U_2(0,1,0), U_3=(0,0,1). The frame U_1, U_2, U_3 (as vector fields) is called the natural frame. As a generalization of the natural frame, we can define

Definition. Vector fields E_1, E_2, E_3 on \mathbb{E}^3 constitute a frame field on \mathbb{E}^3 provided
E_i\cdot E_j=\delta_{ij},\ i,j=1,2,3
where \delta_{ij} is the Kronecker’s delta.

There are two important examples of frame fields: the cylindrical frame field and the spherical frame field.

Example. [The Cylindrical Frame Field]

Let (r,\theta,z) be the usual cylindrical coordinates on \mathbb{E}^3.

Fig. 1 The Cylindrical Frame

We find a unit vector field in the direction in which each coordinate increases. For r, this is
E_1=\cos\theta U_1+\sin\theta U_2.
For \theta, we find
E_2=-\sin\theta U_1+\cos\theta U_2. Finally for z, it is clearly
E_3=U_3.

Example. [The spherical Frame Field]

Let (\rho,\theta,\varphi) be the usual spherical coordinates.

Fig. 2 The Spherical Frame

One can find the spherical frame F_1, F_2, F_3 using the cylindrical frame E_1, E_2, E_3. Clearly
F_2=E_2=-\sin\theta U_1+\cos\theta U_2.

Fig 3. The Spherical Frame

As one can see in the Figure 3, F_1 and F_3 are obtained as
\begin{align*} F_1&=\cos\varphi E_1+\sin\varphi E_3\\ &=\cos\varphi(\cos\theta U_1+\sin\theta U_2)+\sin\varphi U_3,\\ F_3&=-\sin\varphi E_1+\cos\varphi E_3\\ &=-\sin\varphi(\cos\theta U_1+\sin\theta U_2)+\cos\varphi U_3. \end{align*}
Hence,
\begin{align*} F_1&=\cos\varphi\cos\theta U_1+\cos\varphi\sin\theta U_2+\sin\varphi U_3,\\ F_2&=-\sin\theta U_1+\cos\theta U_3,\\ F_3&=-\sin\varphi\cos\theta U_1-\sin\varphi\sin\theta U_2+\cos\varphi U_3. \end{align*}

3 thoughts on “Frame Fields

  1. Kris

    I think F_2=E_2 should be as above, i.e., -\sin(\theta) U_1 + \cos(\theta) U_2, not E_3.

    I like this web site.

    Best
    Kris

    Reply
  2. Pingback: Structural Equations | MathPhys Archive

Leave a Reply

Your email address will not be published. Required fields are marked *