Zeros and Poles

Zeros and poles are closely related and their relationship may be used to calculates residues. First we introduce two theorems without proof. (Their proofs can be found, for instance, in [1].)

Theorem 1. A function $f$ is that is analytic at a point $z_0$ has a zero of order $m$ there if and only if there is a function $g$, which is analytic and nonzero at $z_0$, such that
$$f(z)=(z-z_0)^mg(z).$$

Theorem 2. Suppose that:

(i) two functions $p$ and $q$ are analytic at a point $z_0$;

(ii) $p(z_0)\ne 0$ and $q$ has a zero of order $m$ at $z_0$.

Then $\frac{p(z)}{q(z)}$ has a pole of order $m$ at $z_0$.

Now we discuss our main theorem in this lecture.

Theorem. Let two functions $p$ and $q$ be analytic at a point $z_0$. If
$$p(z_0)\ne 0,\ q(z_0)=0,\ \mbox{and}\ q'(z_0)\ne 0,$$
then  $z_0$ is a simple pole of $\frac{p(z)}{q(z)}$ and
$$\mathrm{Res}_{z=z_0}\frac{p(z)}{q(z)}=\frac{p(z_0)}{q'(z_0)}.$$

Proof. From the conditions, we see that $q(z)$ has a zero of order $1$, so by theorem 1 it can be written as
$$q(z)=(z-z_0)g(z)$$
where $g(z)$ is analytic at $z=z_0$ and $g(z_0)\ne 0$. This can be in fact readily seen without quoting theorem 1. Since $q(z)$ is analytic at $z_0$, it can be written as a Taylor series expansion
\begin{align*}
q(z)&=q(z_0)+\frac{q'(z_0)}{1!}(z-z_0)+\frac{q^{\prime\prime}(z_0)}{2!}(z-z_0)^2+\cdots\\
&=\frac{q'(z_0)}{1!}(z-z_0)+\frac{q^{\prime\prime}(z_0)}{2!}(z-z_0)^2+\cdots\\
&=(z-z_0)\left\{\frac{q'(z_0)}{1!}+\frac{q^{\prime\prime}(z_0)}{2!}(z-z_0)+\cdots\right\}.
\end{align*}
Set $g(z)=\frac{q'(z_0)}{1!}+\frac{q^{\prime\prime}(z_0)}{2!}(z-z_0)+\cdots$. Then $g(z)$ is analytic at $z=z_0$ and that $g(z_0)=q'(z_0)\ne 0$.

Now, theorem 2 implies that $\frac{p(z)}{q(z)}$ has a simple pole at $z=z_0$, but without quoting theorem 2, $\frac{p(z)}{q(z)}=\frac{\frac{p(z)}{g(z)}}{z-z_0}$, $\frac{p(z)}{g(z)}$ is analytic and nonzero at $z=z_0$. So, $\frac{p(z)}{q(z)}$ has a simple pole at $z=z_0$ as we studied here. Thus,
$$\mathrm{Res}_{z=z_0}\frac{p(z)}{q(z)}=\frac{p(z_0)}{g(z_0)}=\frac{p(z_0)}{q'(z_0)}.$$
This completes the proof.

Example. Find the residue of the functions
$$f(z)=\frac{z}{z^4+4}$$
at the isolated singularity $z_0=\sqrt{2}e^{\frac{i\pi}{4}}=1+i$.

Solution. Let $p(z)=z$ and $q(z)=z^4+4$. Then $p(z_0)=p(1+i)=1+i\ne 0$, $q(z_0)=0$, and $q'(z_0)=4z_0^3=4(1+i)^3\ne 0$. Hence, $f(z)$ has a simple pole at $z_0$. The residue $B_)$ is found by
$$B_0=\mathrm{Res}_{z=z_0}f(z)=\frac{p(z_0)}{q'(z_0)}=\frac{z_0}{3z_0^3}=\frac{1}{4z_0^2}=-\frac{i}{8}.$$

Example. Evaluate the contour integral
$$\int_C\frac{e^{zt}}{\sinh z}dz,$$
where $C$ is the positively oriented circle $|z|=8$.

Solution. $\sinh z=0$ if and only if $e^{2z}=1$. Let $z=x+iy$. Then it follows from $e^{2z}=1$ that $$e^{2x}\cos 2y=1,\ e^{2x}\sin 2y=0.$$
The solutions are $x=0$ and $y=n\pi$, $n=0,\pm 1,\pm 2,\cdots$. Thus, $\sinh z=0$ if and only if $z=n\pi i$, $ n=0,\pm 1,\pm 2$. Among these, only $z_0=0$, $z_1=\pi i$, $z_2=-\pi i$, $z_3=2\pi i$, and $z_4=-2\pi i$ lie within the interior of the circle $|z|=8$. Let $p(z)=e^{zt}$  and $q(z)=\sinh z$. Then for each $i=0,1,2,3,4$, $p(z_i)\ne 0$, $q(z_i)=0$ and $q(z_i)\ne 0$. So each $z_i$ is a simple pole of $f(z)=\frac{e^{zt}}{\sinh z}$. If we denote each residue $\mathrm{Res}_{z=z_i}f(z)$ by $B_i$, then we have
\begin{align*}B_0&=\frac{p(0)}{q'(0)}=1,\\
B_1&=\frac{p(\pi i)}{q'(\pi i)}=-e^{\pi it},\ B_2=\frac{p(-\pi i)}{q'(-\pi i)}=-e^{-\pi it},\\
B_3&=\frac{p(2\pi i)}{q'(2\pi i)}=e^{2\pi it},\ B_4=\frac{p(-2\pi i)}{q'(-2\pi i)}=e^{-2\pi it}.\end{align*}
By Cauchy’s Residue Theorem, we obtain
\begin{align*}
\int_C\frac{e^{zt}}{\sinh z}dz&=2\pi i\sum_{i=0}^4B_i\\
&=2\pi i(1-2\cos\pi t+2\cos 2\pi t).
\end{align*}

References:

[1] James Brown and Ruel Churchill, Complex Variables and Applications, 8th Edition, McGraw-Hill, 2008

Leave a Reply

Your email address will not be published. Required fields are marked *