Cauchy’s Residue Theorem

In here, we discussed that if a function $f(z)$ is analytic except at an isolated singularity $z_0$ interior to a positively oriented simple closed contour $C$, then
$$\oint_C f(z)dz=2\pi i\mathrm{Res}_{z=z_0}f(z).$$
What if there are more than one isolated singularities of $f(z)$ interior to $C$? It turns out that:

Theorem [Cauchy’s Residue Theorem]. Let $C$ be a simple closed contour, positively oriented. If a function $f(z)$ is analytic except inside and on $C$ except for a finite number of singularities $z_k$ $(k=1,2,\cdots)$ inside $C$, then
$$\oint_C f(z)dz=2\pi i\sum_{k=1}^n\mathrm{Res}_{z=z_k}f(z).$$

Proof.

By Cauchy-Goursat Theorem, we have
$$\oint_C f(z)dz-\sum_{k=1}^n\oint_{C_k}f(z)dz=0$$
and so,
\begin{align*}
\oint_C f(z)dz&=\sum_{k=1}^n\oint_{C_k}f(z)dz\\
&=\sum_{k=1}^n\mathrm{Res}_{z=z_k}f(z).
\end{align*}

Example. Evaluate $\oint_C\frac{5z-2}{z(z-1)}dz$, where $C$ is the circle $|z|=2$.

Solution.

For the punctured disk $0<|z|<1$,
\begin{align*}
\frac{5z-2}{z(z-1)}&=\frac{5z-2}{z}\cdot\frac{-1}{1-z}\\
&=\frac{5z-2}{z}(-\sum_{n=0}^\infty z^n)\\
&=-\left(5-\frac{2}{z}\right)\sum_{n=0}^\infty z^n\\
&=-5\sum_{n=0}^\infty z^n+2\sum_{n=0}^\infty z^{n-1}.
\end{align*}
Hence, the residue is $b_1=\mathrm{Res}_{z=0}f(z)=2$, where $f(z)=\frac{5z-2}{z(z-1)}$.

For the punctured disk $0<|z-1|<1$,
\begin{align*}
\frac{5z-2}{z(z-1)}&=\frac{5(z-1)+3}{z-1}\cdot\frac{1}{1+(z-1)}\\
&=\left(5+\frac{3}{z-1}\right)\sum_{n=0}^\infty (-1)^n(z-1)^n.
\end{align*}
Hence, the residue is $b_2=\mathrm{Res}_{z=1}f(z)=3$.
Therefore, by Cauchy’s Residue Theorem, we obtain
$$\oint_C\frac{5z-2}{z(z-1)}dz=2\pi i(b_1+b_2)=10\pi i.$$

Leave a Reply

Your email address will not be published. Required fields are marked *