Taylor Series

Theorem. Suppose that a function f is analytic throughout a disk |z-z_0|<R_0 centered at z_0 and with radius R_0. Then f(z) has the power series representation
f(z)=\sum_{n=0}^\infty a_n(z-z_0)^n\ (|z-z_0|<R_0),
where
a_n=\frac{f^{(n)}(z_0)}{n!}\ (n=0,1,2,\cdots).

Proof. First consider the case z_0=0 and show that
f(z)=\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}z^n\ (|z|<R_0).
This particular Taylor series is called a Maclaurin series. Let us write |z|=r and let C_0 denote any positively oriented circle centered at the origin and with radius r_0, where r<r_0<R_0.

Since f is analytic inside and on the circle C_0 and since z is interior to C_0, by the Cauchy Integral Formula, we have
f(z)=\frac{1}{2\pi i}\oint_{C_0}\frac{f(s)}{s-z}ds.
Note that \frac{1}{s-z} may be written as
\begin{align*} \frac{1}{s-z}&=\frac{1}{s}\frac{1}{1-\frac{z}{s}}\\ &=\sum_{n=0}^{N-1}\frac{z^n}{s^{n+1}}+z^N\frac{1}{(s-z)s^N}. \end{align*}
Using this, f(z) may be written as
\begin{align*} f(z)&=\frac{1}{2\pi i}\oint_{C_0}\frac{f(s)}{s-z}ds\\ &=\sum_{n=0}^{N-1}\frac{1}{2\pi i}\oint_{C_0}\frac{f(s)}{s^{n+1}}ds z^n+\frac{z^N}{2\pi i}\oint_{C_0}\frac{f(s)}{(s-z)s^N}ds\\ &=\sum_{n=0}^{N-1}\frac{f^{(n)}(0)}{n!}z^n+\rho_N(z), \end{align*}
where
\rho_N(z)=\frac{z^N}{2\pi i}\oint_{C_0}\frac{f(s)}{(s-z)s^N}ds.
We are done if we can show that \displaystyle\lim_{N\to\infty}\rho_N=0. By triangle inequality, |s-z|\geq ||s|-|z||=r_0-r. So, we obatin
\begin{align*} |\rho_N(z)|&\leq \frac{r^N}{2\pi}\frac{M}{(r_0-r)r_0^N}2\pi r_0\\ &=\frac{Mr_0}{r_0-r}\left(\frac{r}{r_0}\right)^N. \end{align*}
Since r<r_0, \displaystyle\lim_{N\to\infty}|\rho_N(z)|=0 i.e. \displaystyle\lim_{N\to\infty}\rho_N=0. Hence, we have proved that
f(z)=\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}z^n.
Now, suppose that f(z) is analytic when |z-z_0|<R_0. Then g(z):=f(z+z_0) is analytic when |z|=|(z+z_0)-z_0|<R_0. So, g(z) has the Maclaurin series representation
g(z)=\sum_{n=0}^\infty\frac{g^{(n)}(0)}{n!}z^n\ (|z|<R_0)
or
f(z+z_0)=\sum_{n=0}^\infty\frac{f^{(n)}(z_0)}{n!}z^n\ (|z|<R_0).
Replacing z by z-z_0, we finally obtain the Taylor series representation
f(z)=\sum_{n=0}^\infty\frac{f^{(n)}(z_0)}{n!}(z-z_)^n\ (|z-z_0|<R_0).

Example. The function f(z)=e^z is entire, so it has a Maclaurin series representation for all z\in\mathbb{C}.
e^z=\sum_{n=0}^\infty\frac{z^n}{n!}\ (|z|<\infty).

Example. \sin z is defined as
\sin z=\frac{e^{iz}-e^{-iz}}{2i}.
So,
\begin{align*} \sin z&=\frac{1}{2i}\left[\sum_{n=0}^\infty\frac{(iz)^n}{n!}-\sum_{n=0}^\infty\frac{(-iz)^n}{n!}\right]\\ &=\frac{1}{2i}\sum_{n=0}^\infty[1-(-1)^n]\frac{i^nz^n}{n!}\\ &=\sum_{n=0}^\infty(-1)^n\frac{z^{2n+1}}{(2n+1)!}\ (|z|<\infty). \end{align*}
Using the definition \cos z=\frac{e^{iz}+e^{-iz}}{2}, one can similarly obtain the Maclaurin series representation for \cos z
\cos z=\sum_{n=0}^\infty(-1)^n\frac{z^{2n}}{(2n)!}.

Leave a Reply

Your email address will not be published. Required fields are marked *