Normed Spaces and Banach Spaces

From here on, I assume a background of undergraduate level Linear Algebra. Readers should be familiar with notions such as vector spaces, subspaces, linear combination, linear dependence and linear independence, basis, and dimension.

In this lecture, we begin with the notion of a normed space. A normed space is a vector space with a norm defined. So what is a norm? A norm $||\cdot||$ is a real-valued function $||\cdot||: V\longrightarrow\mathbb{R}^+\cup\{0\}$ such that for $x,y\in V$ and for $\alpha$ a scalar,

(N1) $||x||=0\Longleftrightarrow x=O$.

(N2) $||\alpha x||=|\alpha|||x||$.

(N3) $||x+y||\leq ||x||+||y||$. (Triangle Inequality.)

A norm on $V$ defines a metric $d$ on $V$
\begin{equation}
\label{eq:metric}
d(x,y)=||x-y||.
\end{equation}
\eqref{eq:metric} is called a metric induced by the norm $||\cdot||$. So, a normed space is a metric space but the converse need not be true.

A complete normed space is called a Banach space.

Example. $\mathbb{R}^n$ and $\mathbb{C}^n$ with the Euclidean norm
$$||x||=\left(\sum_{j=1}^n|\xi_j|^2\right)^{\frac{1}{2}}$$ are Banach spaces.

Example. $\ell^p$ with the norm
$$||x||=\left(\sum_{j=1}^n|\xi_j|^p\right)^{\frac{1}{p}}$$ is a Banach space.

Example. $\ell^\infty$ with the norm
$$||x||=\sup_{j\in\mathbb{N}}|\xi_j|$$ is a Banach space.

Example. $\mathcal{C}[a,b]$ with the norm
$$||x||=\max_{t\in[a,b]}|x(t)|$$ is a Banach space.

What follows next is an example of a normed space which is not complete. $\mathcal{C}[a,b]$, the vector space of all continuous real-valued functions on $[a,b]$ forms a normed space with the norm defined by
\begin{equation}
\label{eq:intnorm}
||x||=\left(\int_a^b x(t)^2dt\right)^{\frac{1}{2}}.
\end{equation}
Let $[a,b]=[0,1]$. for each $n=1,2,\cdots$, let $a_n=\frac{1}{2}+\frac{1}{n}$. Define a sequence $(x_n)$ in $\mathcal{C}[0,1]$ by
$$x_n(t)=\left\{\begin{array}{ccc}
0 & \mbox{if} & t\in\left[0,\frac{1}{2}\right],\\
nt-\frac{n}{2} & \mbox{if} & t\in\left[\frac{1}{2},a_n\right],\\
1 & \mbox{if} & t\in[a_n,1].
\end{array}\right.$$

nobanachnobanach2Let us assume that $n>m$. Then
\begin{align*}
||x_m-x_n||^2&=\int_0^1(x_m(t)-x_n(t))^2dt\\
&=\int_0^{\frac{1}{2}}(x_m(t)-x_n(t))^2dt+\int_{\frac{1}{2}}^{a_n}(x_m(t)-x_n(t))^2dt\\&+\int_{a_n}^{a_m}(x_m(t)-x_n(t))^2dt+\int_{a_m}^1(x_m(t)-x_n(t))^2dt\\
&=\int_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{n}}\left(nt-\frac{n}{2}-mt+\frac{m}{2}\right)^2dt+\int_{\frac{1}{2}+\frac{1}{n}}^{\frac{1}{2}+\frac{1}{m}}\left(1-mt+\frac{m}{2}\right)^2dt\\
&=\frac{(n-m)^2}{3mn^2}\\
&<\frac{1}{3m}-\frac{1}{3n}.
\end{align*}
Given $\epsilon>0$, choose a positive integer $N$ so that $N>\frac{1}{3\epsilon^2}$. Then for all $m,n\geq N$,
\begin{align*}
||x_n-x_m||^2&<\frac{1}{3m}-\frac{1}{3n}\\
&<\frac{1}{3m}\\
&\leq\frac{1}{3N}\\
&<\epsilon^2.
\end{align*}
Therefore, $(x_n)$ is a Cauchy sequence in $\mathcal{C}[0,1]$. For any $x(t)\in\mathcal{C}[0,1]$,
\begin{align*}
||x_n-x||^2&=\int_0^1(x_n(t)-x(t))^2dt\\
&=\int_0^{\frac{1}{2}}x(t)^2dt+\int_{\frac{1}{2}}^{a_n}(x_n(t)-x(t))^2dt+\int_{a_n}^1(1-x(t))^2dt.
\end{align*}
Suppose that $x_n\rightarrow x$ as $n\to\infty$. The by the continuity of $x_n(t)$ and $x(t)$, $x(t)$ must satisfy that
$$x(t)=\left\{\begin{array}{ccc}
0 & \mbox{if} & t\in\left[0,\frac{1}{2}\right),\\
1 & \mbox{if} & t\in\left(\frac{1}{2},1\right].
\end{array}\right.$$
But this is impossible since $x(t)$ is continuous. Hence, $(x_n)$ is not convergent in $\mathcal{C}[0,1]$.

In here, we studied completion of metric spaces. Since a normed space is a metric space, we also have completion of normed spaces. The completion of $\mathcal{C}[a,b]$ with the norm \eqref{eq:intnorm} is denoted by $L^2[a,b]$. More generally, for any $p\geq 1$, the Banach space $L^p[a,b]$ is the completion of the normed space $\mathcal{C}[a,b]$ with the norm
\begin{equation}
||x||_p=\left(\int_a^b|x(t)|^pdt\right)^{\frac{1}{p}}.
\end{equation}

Lemma. A metric $d$ induced by a norm on a normed space $X$ satisfies

  1. $d(x+a,y+a)=d(x,y)$, $a,x,y\in X$. This means that $d$ is translation invariant.
  2. $d(\alpha x,\alpha y)=|\alpha|d(x,y)$, $\alpha$, a scalar.

Proof.
\begin{align*}
d(x+a,y+a)&=||x+a-(y+a)||=||x-y||=d(x,y),\\
d(\alpha x,\alpha y)&=||\alpha x-\alpha y||=|\alpha|||x-y||=|\alpha|d(x,y).
\end{align*}

We know that a norm on a vector space $V$ defines a metric on $V$. Can every metric on a vector space $V$ be obtained from a norm? The answer is negative. Let $V$ be the set of all bounded or unbounded sequences of complex numbers. Then $V$ is a vector space. The metric $d$ on $V$ defined by
$$d(x,y)=\sum_{j=1}^\infty\frac{1}{2^j}\frac{|\xi_j-\eta_j|}{1+|\xi_j-\eta_j|}$$ is not translation invariant, so it cannot be obtained from a norm.

Group Theory 8: Homomorphisms

In this lecture, we study maps from a group into another group that carry over the same group structure i.e preserve group operations. Such maps are called homomorphisms. It turns out that it suffices to require a homomorphism to preserve a binary operation only. Then the unary operation (inverses) and the nullary operation (the identity element) are automatically preserved.

Definition. Let $(G,\ast)$ and $(G’,\sharp)$ be two groups. A map $\varphi: G\longrightarrow G’$ is called a homomorphism if $\varphi(a\ast b)=\varphi(a)\sharp\varphi(b)$.

Example. Define $\varphi: (\mathbb{R}^+,\cdot)\longrightarrow(\mathbb{R},+)$ by
$$\varphi(x)=\log_{10}x,\ \forall x\in\mathbb{R}^+.$$
Then $\varphi$ is a homomorphism. In addition, $\varphi$ is one-to-one and onto. A homomorphism which is one-to-one and onto is called an isomorphism. If there is an isomorphism from a group onto another group, they are the same group meaning we do not distinguish them.

Example. The map $\varphi: \mathbb{Z}\longrightarrow\mathbb{Z}_n$ defined by
$$\varphi(x)=[x],\ \forall\ x\in\mathbb{Z}$$
is a homomorphism called the canonical or the natural homomorphism. The canonical homomorphism is onto.

Example. Let $G$ be a group and $A(G)$ the set of all bijective (i.e. one-to-one and onto) maps of $G$ onto itself. Recall that $A(G)$ forms a group with composition. Let $a\in G$. Define $T_a: G\longrightarrow G$ by
$$T_ax=ax\ \forall\ x\in G.$$ Hence $\forall a\in G$, $T_a\in A(G)$. Furthermore, $\forall a,b\in G$, $T_aT_b=T_{ab}$: $\forall x\in G$,
$$T_aT_b(x)=T_a(T_bx)=T_a(bx)=a(bx)=(ab)x=T_{ab}x.$$
Define $\varphi: G\longrightarrow A(G)$ by
$$\varphi(a)=T_a,\ \forall\ a\in G.$$ Then $\varphi$ is a homomorphism. In addition, it is one-to-one. If $|G|=n$, then $|A(G)|=n!$, so $\varphi$ cannot be onto.

Definition. A homomorphism which is one-to-one (injective) is called a monomorphism. A homomorphism which is onto (surjective) is called an epimorphism. A homomorphism which is one-to-one and onto (bijective) is called an isomorphism as mentioned above. $G$ is said to be isomorphic to $G’$ if there exists an isomorphism from $G$ onto $G’$. If $G$ is isomorphic to $G’$, we write $G\cong G’$. An isomorphism from a group $G$ onto itself is called an automorphism.

Theorem. [Cayley’s Theorem] Every group $G$ is isomorphic to some subgroup of $A(S)$, for an appropriate set $S$.

We in fact proved this theorem in the previous example by taking $S$ to be the group $G$ itself. But there may be other choices for $S$. If $G$ is finite, $S$ may be taken to be a finite set in which case $A(S)$ is $S_n$, the group of permutations of $\{1,2,\cdots,n\}$. In this case, Cayley’s Theorem is stated as: A finite group can be represented as a group of permutations.

Example. Let $G$ be a group and $a\in G$ be fixed. The map $\varphi: G\longrightarrow G$ defined by
$$\varphi(x)=a^{-1}xa,\ \forall x\in G$$
is an automorphism called the inner automorphism of $G$ induced by $a$.

Example. Define $\varphi: (\mathbb{R},+)\longrightarrow (\mathbb{C}\setminus\{0\},\cdot)$ by
$$\varphi(x)=e^{ix},\ \forall x\in\mathbb{R}.$$
While $\varphi$ is a homomorphism, it is neither one-to-one nor onto.

Lemma. Let $\varphi: G\longrightarrow G’$ be a homomorphism. Then

(a) $\varphi(e)=e’$.

(b) $\varphi(a^{-1})=\varphi(a)^{-1}$.

Proof. (a) Let $a\in G$. Then $ae=a$. Since $\varphi$ is a homomorphism, $$\varphi(ae)=\varphi(a)\varphi(e)=\varphi(a)=\varphi(a)e’.$$ So by the cancellation law, we obatin $\varphi(e)=e’$.

(b) Let $a\in G$. Then
\begin{align*}
\varphi(a)\varphi(a^{-1})&=\varphi(aa^{-1})\ (\mbox{because $\varphi$ is a homomorphism})\\
&=\varphi(e)\\
&=e’\ (\mbox{by part (a)})
\end{align*}
Hence, $\varphi(a)^{-1}=\varphi(a^{-1})$.

Lemma. Let $\varphi: G\longrightarrow G’$ be a homomorphism. Then $\varphi(G)\leq G’$.

In here, the kernel of a function was introduced. Let $\varphi: G\longrightarrow G’$ be a homomorphism and $K=\varphi^{-1}(e’)=\{a\in G: \varphi(a)=e’\}$. Then $\ker\varphi$ and $K=\varphi^{-1}(e’)$, the preimage of $e’$ under $\varphi$ are closely related as:
\begin{align*}
(a,b)\in\ker\varphi&\Longleftrightarrow\varphi(a)=\varphi(b)\\
&\Longleftrightarrow\varphi(ab^{-1})=e’\\
&\Longleftrightarrow ab^{-1}\in K.
\end{align*}
So, in group theory we define $K=\varphi^{-1}(e’)$ to be $\ker\varphi$, the kernel of $\varphi$.

Theorem. $\varphi: G\longrightarrow G’$ is one-to-one if and only if $\ker\varphi=\{e\}$.

Proof. ($\Rightarrow$) Suppose that $\varphi$ is one-to-one and let $a\in\ker\varphi$. Then $\varphi(a)=\varphi(e)=e’$. Since $\varphi$ is one-to-one, $a=e$.

($\Leftarrow$) Suppose that $\ker\varphi=\{e\}$ and let $\varphi(a)=\varphi(b)$. Then
\begin{align*}
\varphi(ab^{-1})=e’&\Longrightarrow ab^{-1}\in\ker\varphi\\
&\Longrightarrow ab^{-1}=e\\
&\Longrightarrow a=b.
\end{align*}
So, $\varphi$ is one-to-one.

Theorem. Let $\varphi: G\longrightarrow G’$ be a homomorphism. Then $\ker\varphi\leq G$.

Theorem. Let $K=\ker\varphi$. Then $\forall a\in G$, $aK=Ka$.

Proof. It suffices to show (why?) that $\forall a\in G$, $a^{-1}Ka\subset K$. Let $a\in G$. Then $\forall k\in K$,
$$\varphi(a^{-1}ka)=\varphi(a)^{-1}\varphi(k)\varphi(a)=e’\Longrightarrow a^{-1}ka\in K.$$

Group Theory 7: Congruence Modulo $n$

In this lecture, we study the congruence modulo $n$, $\equiv\mod n$ on $\mathbb{Z}$. As we shall see, $\equiv\mod n$ is an equivalence relation on $\mathbb{Z}$. It is indeed more than just an equivalence relation. $\equiv\mod n$ also preserves operations $+$ and $\cdot$ on $\mathbb{Z}$. Because of this, we can define an operation $+$ on the quotient set $\mathbb{Z}/\equiv\mod n$ so that it becomes a quotient group. In general, if an equivalence relation preserves operations, it is called a congruence relation and a congruence relation allows us to define a quotient algebra e.g. a quotient group. Let $G$ be a group and $H\leq G$. We studied the equivalence relation $\sim$ on $G$: $\forall a,b\in G$,
$$a\sim b \Longleftrightarrow ab^{-1}\in H.$$ It turns out that $\sim$ is a congruence relation i.e. it preserves the group operation $\cdot$ if $H$ is a normal subgroup of $G$. I am not going to talk about normal subgroups here but we will study details about this next time.

On $\mathbb{Z}$, define $a\equiv b\mod n$, we say $a$ is congruent to $b$ modulo $n$, if $n|b-a$. The class of $a$
$$[a]=\{a+nk: k\in\mathbb{Z}\}$$ is called the congruence class of $a$. By Euclid’s algorithm, $\forall b\in\mathbb{Z}$, $b=qn+r$ where $0\leq r<n$. This implies that $b\equiv r\mod n$and so $[b]=[r]$. Hence, the $n$ classes $[0],[1],\cdots,[n-1]$ give us all the congruence classes and they are all distinct. Let
$$\mathbb{Z}_n=\{[0],[1],\cdots,[n-1]\}.$$ That is, $\mathbb{Z}_n$ is the quotient set modulo the equivalence relation $\equiv\mod n$, $\mathbb{Z}/\equiv\mod n$. Define $+$ on $\mathbb{Z}_n$: $\forall [a],[b]\in\mathbb{Z}_n$,
$$[a]+[b]:=[a+b].$$ Then $+$ is well-defined on $\mathbb{Z}_n$. What this means is that $+$ is well-defined as a function $+:\mathbb{Z}_n\times\mathbb{Z}_n\longrightarrow\mathbb{Z}_n$. In other words, if $[a]=[a’]$ and $[b]=[b’]$ then $[a+b]=[a’+b’]$. This can be shown straightforward and is left for the readers. One can also readily see that $(\mathbb{Z}_n,+)$ is an abelian group. Define $\cdot $ on $\mathbb{Z}_n$: $\forall [a],[b]\in\mathbb{Z}_n$,
$$[a]\cdot[b]:=[ab].$$ Then $\cdot$ is also well-defined on $\mathbb{Z}_n$. However, $(\mathbb{Z}_n,\cdot)$ is not a group. $\forall [a]\in\mathbb{Z}_n$, $[0][a]=[0]$ and $[1]$ is the identity under multiplication, so $[0]$ does not have a multiplicative inverse. Would nonzero elements of $\mathbb{Z}_n$ form a group then? The answer is no. For instance, in $\mathbb{Z}_6$, $[2],[3]\ne 0$ but $[2][3]=[6]=[0]$. So, is there a subset of $\mathbb{Z}_n$ that forms a group under $\cdot$? The answer is affirmative. Let $\mathbb{Z}_n^\ast=\{[a]\in\mathbb{Z}_n: (a,n)=1\}$. First, note that for $[a]=[b]$, $(a,n)=1$ if and only if $(b,n)=1$. Recall the property that if $(a,n)=1$ and $(b,n)=1$, then $(ab,n)=1$. This implies that $[a][b]=[ab]\in\mathbb{Z}_n^\ast$. Now suppose that $[a][b]=[a][c]$. Then
\begin{align*}
[ab]=[ac]&\Longrightarrow ab-ac=nk\\
&\Longrightarrow n|a(b-c)\\
&\Longrightarrow n|b-c\ (\mbox{since}\ (a,n)=1)\\
&\Longrightarrow [b]=[c].
\end{align*}
That is, $\mathbb{Z}_n^\ast$ has the cancellation property, so $(\mathbb{Z}_n^\ast,\cdot)$ is a group. In some textbooks, $\mathbb{Z}_n^\ast$ is also denoted by $U_n$. The order of $\mathbb{Z}_n^\ast$ is the number of integers $1\leq m<n$ such that $(m,n)=1$.

Definition. The Euler $\varphi$-function, $\varphi(n)$, is defined by $\varphi(1)=1$ and for $n>1$, $\varphi(n)=$ the number of positive integers $m$ with $1\leq m<n$ such that $(m,n)=1$. Hence, $|\mathbb{Z}_n^\ast|=\varphi(n)$. If $n=p$, a prime, then $\varphi(p)=p-1$.

Note that the Euler $\varphi$-function is multiplicative, namely if $(m,n)=1$, then $\varphi(mn)=\varphi(m)\varphi(n)$.

Example. $\varphi(8)=4$, $\varphi(15)=8$.

Example.
\begin{align*}
\mathbb{Z}_8^\ast&=\{[1],[3],[5],[7]\},\\
\mathbb{Z}_{15}^\ast&=\{[1],[2],[4],[7],[8],[11],[13],[14]\}.
\end{align*}

Example. $\mathbb{Z}_9^\ast=\{[1],[2],[4],[5],[7],[8]\}$.
\begin{align*}
[1]^1&=[2],\ [2]^2=[4],\ [2]^3=[8],\ [2]^4=[16]=[7],\\
[2]^5&=[32]=[5],\ [2]^6=[2][2]^5=[2][5]=[10]=[1].
\end{align*}
Hence, $\mathbb{Z}_9^\ast$ is a cyclic group $\mathbb{Z}_9^\ast=\langle[2]\rangle$.

As a summary,

Theorem. $\mathbb{Z}_n^\ast$ forms an abelian group under the product $[a][b]=[ab]$, of order $\varphi(n)$, where $\varphi(n)$ is the Euler $\varphi$-function.

Theorem. [Euler] If $(a,n)=1$ then $a^{\varphi(n)}\equiv 1\mod n$.

Proof. Since $\mathbb{Z}_n^\ast$ is a group of order $\varphi(n)$, $a^{\varphi(n)}=1$, $\forall a\in\mathbb{Z}_n^\ast$. So,
$$[a^{\varphi(n)}]=[a]^{\varphi(n)}=[1]\Longrightarrow a^{\varphi(n)}\equiv 1\mod n.$$

Corollary. [Fermat] If $p$ is a prime and $p\not | a$, then
$$a^{p-1}\equiv 1\mod p.$$
For any integer $b$, $b^p\equiv b\mod p$. This corollary is usually called Fermat’s Little Theorem.

Proof. $\varphi(p)=p-1$. If $(a,p)=1$, then by the previous theorem,
\begin{align*}
a^{p-1}\equiv 1\mod p &\Longrightarrow a^{p-1}-1=pk\\
&\Longrightarrow a^p-a=p(ak)\\
&\Longrightarrow a^p\equiv a\mod p.
\end{align*}
If $p\not| b$, then $b^p\equiv b\mod p$. If $p|b$, then $b\equiv 0\mod p\Longrightarrow b^p\equiv 0\mod p$. So for any $b\in\mathbb{Z}$, $b^p\equiv b\mod p$.

Example. Compute the remainder of $8^{103}$ when divided by 13.

Solution. Since $13\not|8$, by Fermat’s Little Theorem we have $8^{13-1}=8^{12}\equiv 1\mod 13$. Dividing 103 by 13, we obtain $103=12\cdot 8+7$. So,
\begin{align*}
8^{103}&\equiv (8^{12})^88^7\equiv 8^7\equiv (-5)^7\ (8\equiv -5\mod 13)\\
&\equiv (25)^3(-5)\equiv (-1)^3(-5)\equiv 5\mod 13\ (25\equiv -1\mod 13).
\end{align*}

Example. Show that $2^{11,213}-1$ is not divisible by 11.

Solution. Since $11\not| 2$, by Fermat’s Little Theorem we have $2^{10}\equiv 1\mod 11$. $11,213=10\cdot 1,121+3$. So,
\begin{align*}
2^{11,213}-1&\equiv (2^{10})^{1,121}\cdot 2^3-1\equiv 2^3-1\\
&\equiv 7\mod 11.
\end{align*}
Hence, when $2^{11,213}-1$ is divided by 11, the remainder is 7.

The number $11,213$ is a prime and $2^{11,213}-1$ is also a prime. In number theory, primes of the form $2^p-1$ where $p$ is a prime are called Mersenne primes.

Completion of Metric Spaces

This lecture will conclude our discussion on metric spaces with completion of metric spaces.

Definition. Let $X=(X,d)$ and $\tilde X=(\tilde X,d)$ be two metric space. A mapping $T: X\longrightarrow\tilde X$ is said to be an isometry of $T$ preserves distances, i.e.
$$\forall x,y\in X,\ \tilde d(Tx,Ty)=d(x,y).$$ The space $X$ is said to be isometric with $\tilde X$ if there exists a bijective isometry of $X$ onto $\tilde X$.

Theorem [Completion] For a metric space $(X,d)$ there exists a complete metric space $\hat X=(\hat X,\hat d)$ which has s subspace $W$ that is isometric with $X$ and is dense in $\hat X$. $\hat X$ is called the completion of $X$ and it is unique up to isometries.

Proof. This will be a lengthy proof and I have divided it into steps.

Step 1. Construction of $\hat X=(\hat X,\hat d)$.

Let $(x_n)$ and $(y_n)$ be Cauchy sequences in $X$. We say $(x_n)$ is equivalent to $(x_n’)$, and write $(x_n)\sim (x_n’)$, if
$$\lim_{n\to\infty}d(x_n,x_n’)=0.$$ $\sim$ is actually an equivalence relation on the set of all Cauchy sequences of $X$. Clearly $\sim$ is reflexive and symmetric. Let us show that $\sim$ is also transitive. Let $(x_n)\sim (x_n’)$ and $(x_n’)\sim (x_n^{\prime\prime})$. Then
$$\lim_{n\to\infty}d(x_nx_n’)=0\ \mbox{and}\ \lim_{n\to\infty}d(x_n’,x_n^{\prime\prime})=0.$$
\begin{align*}
\lim_{n\to\infty}d(x_n,x_n^{\prime\prime})&\leq\lim_{n\to\infty}d(x_n,x_n’)+\lim_{n\to\infty}d(x_n’,x_n^{\prime\prime})\\
&=0
\end{align*}
Let $\hat X$ be the set of all equivalence classes $\hat x,\hat y,\cdots$ of Cauchy sequences. Define
$$\hat d(\hat x,\hat y)=\lim_{n\to\infty}d(x_n,y_n),$$
where $x_n\in\hat x$ and $y_n\in\hat y$. We claim that $\hat d$ is a metric on $\hat X$. It suffices to show that $\hat d$ is well-defined. The conditions (M1)-(M3) hold due to the fact that $d$ is a metric. First we show that $\hat d(\hat x,\hat y)$ exists. It follows from (M3) that
$$d(x_n,y_n)\leq d(x_n,x_m)+d(x_m,y_m)+d(y_m,y_n)$$ and so we have
$$d(x_n,y_n)-d(x_m,y_m)\leq d(x_n,x_m)+d(y_m,y_n).$$ Similarly, we obtain
$$d(x_m,y_m)-d(x_n,y_n)\leq d(x_n,x_m)+d(y_m,y_n).$$ Hence,
$$|d(x_n,y_n)-d(x_m,y_m)|\leq d(x_n,x_m)+d(y_m,y_n)\rightarrow 0$$ as $n,m\rightarrow\infty$, i.e.
$$\lim_{n,m\to\infty}|d(x_n,y_n)-d(x_m,y_m)|=0.$$
Since $\mathbb{R}$ is complete, $\displaystyle\lim_{n\to\infty}d(x_n,y_n)$ exists. Now we show that the limit is independent of the choice of representatives $(x_n)$ and $(y_n)$. If $(x_n)\sim (x_n’)$ and $(y_n)\sim(y_n’)$, then
$$|d(x_n,y_n)-d(x_n’,y_n’)|\leq d(x_n,x_m)+d(y_m,y_n)\rightarrow 0$$ as $n\to\infty$.

Step 2. Construction of an isometry $T: X\longrightarrow W\subset \hat X$.

For each $b\in X$, let $\hat b$ be the equivalence class of the Cauchy sequence $(b,b,b,\cdots)$. Then $T(b):=\hat b\in\hat X$. Now,
$$\hat d(Tb,Tc)=\hat d(\hat b,\hat c)=d(b,c).$$ So, $T$ is an isometry. An isometry is automatically injective. $T$ is onto since since $T(X)=W$. Let us show that $W$ is dense in $\hat X$. Let $\hat x\in \hat X$ and let $(x_n)\in\hat x$. Since $(x_n)$ is Cauchy, given $\epsilon>0$ $\exists N$ such that $d(x_n,x_N)<\frac{\epsilon}{2}$ $\forall n\geq N$. Let $(x_N,x_N,\cdots)\in\hat x_N$. Then $\hat x_N\in W$.
\begin{align*}
\hat d(\hat x,\hat x_N)=\lim_{n\to\infty}d(x_n,x_N)\leq\frac{\epsilon}{2}<\epsilon&\Longrightarrow \hat x_N\in B(\hat x,\epsilon)\\
&\Longrightarrow B(\hat x,\epsilon)\cap W\ne\emptyset.
\end{align*}
Hence, $\bar W=\hat X$ i.e. $W$ is dense in $\hat X$.

Step 3. Completeness of $\hat X$.

Let $(\hat x_n)$ be any Cauchy sequence in $\hat X$. Since $W$ is dense in $\hat X$, $\forall \hat x_n$, $\exists\hat z_n\in W$ such that $\hat d(\hat x_n,\hat z_n)<\frac{1}{n}$.
\begin{align*}
\hat d(\hat z_m,\hat z_n)&\leq \hat d(\hat z_n,\hat x_m)+\hat d(\hat x_m,\hat x_n)+\hat d(\hat x_n,\hat z_n)\\
&<\frac{1}{m}+\hat d(\hat x_m,\hat x_n)+\frac{1}{n}.
\end{align*}
Given $\epsilon>0$ by Archimedean property $\exists$ a positive integer $N_1$ such that $N>\frac{\epsilon}{3}$. Since $(\hat x_n)$ is a Cauchy sequence, $\exists$ a positive integer $N_2$ such that $\hat d(\hat x_m,\hat x_n)<\frac{\epsilon}{3}$ $\forall m,n\geq N$. Let $N=\max\{N_1,N_2\}$. Then $\forall m,n\geq N$, $\hat d(\hat z_m,\hat z_n)<\epsilon$ i.e. $(\hat z_m)$ is Cauchy. Since $T: X\longrightarrow W$ is an isometry and $\hat z_m\in W$, the sequence $(z_m)$, where $z_m=T^{-1}\hat z_m$, is Cauchy in $X$. Let $\hat x\in\hat X$ be the class to which $(z_m)$ belongs. Show that $\hat x$ is the limit of $(\hat x_n)$. For each $n=1,2,\cdots$,
\begin{align*}
\hat d(\hat x_n,\hat x)&\leq \hat d(\hat x_n,\hat z_n)+\hat d(\hat z_n,\hat x)\\
&<\frac{1}{n}+\hat d(\hat z_n,\hat x)\\
&=\frac{1}{n}+\lim_{m\to\infty}d(z_n,z_m)
\end{align*} since $(z_m)\in\hat x$ and $(z_n,z_n,\cdots)\in\hat z_n\in W$. This implies that $\displaystyle\lim_{n\to\infty}\hat d(\hat x_n,\hat x)=0$ i.e. the Cauchy sequence $(\hat x_n)$ in $\hat X$ has the limit $\hat x\in\hat X$. Therefore, $\hat X$ is complete.

Step 4. Uniqueness of $\hat X$ up to isometries.

Suppose that $(\tilde X,\tilde d)$ is another completion of $X$ i.e. it is a complete metric space with a subspace $\tilde W$ dense in $\tilde X$ and isometric with $X$. We show that $\hat X$ is isometric with $\tilde X$. Let $X$ is isometric with $W$ and $\tilde W$ via isometries $T$ and $\tilde T$, respectively. Then $W$ is isometric with $\tilde W$ via the isometry $\rho=\tilde T\circ T^{-1}$.

$$\begin{array}{ccc}
& & W\\
& \nearrow &\downarrow\\
X & \longrightarrow & \tilde{W}
\end{array}$$

Let $\hat x\in\hat X$. Then $\exists$ a sequence in $(\hat x_n)\in W$ such that $\displaystyle\lim_{n\to\infty}\hat x_n=\hat x$. $(\hat x_n)$ is a Cauchy sequence and $\rho$ is an isometry, so $(\tilde x_n)$, where $\tilde x_n:=\rho\hat x_n$, is a Cauchy sequence in $\tilde W\subset \tilde X$. Since $\tilde X$ is complete, $\exists\tilde x\in\tilde X$ such that $\displaystyle\lim_{n\to\infty}\tilde x_n=\tilde x$. Define a mapping $\psi:\hat X\longrightarrow\tilde X$ by $\psi\hat x=\tilde x$. Then we claim that $\hat X$ is isometric with $\tilde X$ via $\psi$.

Step A. $\psi$ is well-defined.

It suffices to show that $T\hat x$ does not depend on the choice of $(\hat x_n)\in W$ such that $\displaystyle\lim_{n\to\infty}\hat x_n=\hat x$. Let $(\hat x_n’)$ be another sequence in $W$ such that $\displaystyle\lim_{n\to\infty}\hat x_n’=\hat x$. Then $(\tilde x_n’)$, where $\tilde x_n’=\rho\hat x_n’$, is a Cauchy sequence in $\tilde W$ and so $\exists\tilde x’\in\tilde X$ such that $\displaystyle\lim_{n\to\infty}\tilde x_n’=\tilde x’$. Now,
\begin{align*}
\tilde d(\tilde x,\tilde x’)&=\lim_{n\to\infty}\tilde d(\tilde x_n,\tilde x_n’)\\
&=\lim_{n\to\infty}\hat d(\hat x_n,\hat x_n’)\ (\rho\ \mbox{is an isometry})\\
&=\hat d(\hat x,\hat x)\\
&=0.
\end{align*}
Hence, $\tilde x=\tilde x’$.

Step B. $\psi$ is onto.

Let $\tilde x\in\tilde X$. Then $\exists$ a sequence $(\tilde x_n)$ in $\tilde W$ such that $\displaystyle\lim_{n\to\infty}\tilde x_n=\tilde x$. $(\tilde x_n)$ is Cauchy (since it is a convergent sequence) and $\rho^{-1}$ is an isometry, so the sequence $(\hat x_n)\subset \hat X$, where $\hat x_n=\rho^{-1}\tilde x_n$, is Cauchy. Since $\hat X$ is complete, $\exists\hat x\in\hat X$ such that $\displaystyle\lim_{n\to\infty}\hat x_n=\hat x$. Clearly $\psi\hat x=\tilde x$ and hence $\psi$ is onto.

Step C. $\psi$ is an isometry.

Let $\hat x,\hat y\in\hat X$. Then $\exists$ sequences $(\hat x_n)$, $(\hat y_n)$ in $W$ such that $\displaystyle\lim_{n\to\infty}\hat x_n=\hat x$ and $\displaystyle\lim_{n\to\infty}\hat y_n=\hat y$, respectively.
\begin{align*}
\hat d(\hat x,\hat y)&=\lim_{n\to\infty}\hat d(\hat x_n,\hat y_n)\\
&=\lim_{n\to\infty}\tilde d(\tilde x_n,\tilde y_n)\ (\tilde x_n:=\rho\hat x_n,\ \tilde y_n:=\rho y_n)\\
&=\tilde d(\tilde x,\tilde y)\ (\lim_{n\to\infty}\tilde x_n=\tilde x,\ \lim_{n\to\infty}\tilde y_n=\tilde y)\\
&=\tilde d(\psi\hat x,\psi\hat y).
\end{align*}
Thus, $\psi$ is an isometry.

Remember that an isometry from a metric space into another metric space is automatically one-to-one. Therefore, $\hat X$ is isometric with $\tilde X$ via $\psi$.

Intuitively speaking, the completion of a metric space $X$ can be achieved by adding to $X$ all its limit points. Recall that if $x$ is a limit point of $X$, then there exists a sequence $(x_n)$ in $X$ such that $\displaystyle\lim_{n\to\infty}x_n=x$. This is a reminiscence of extending from rational numbers $\mathbb{Q}$ to real numbers $\mathbb{R}$ (which is complete) by adding to $\mathbb{Q}$ all its limit points (irrational numbers).

Group Theory 6: Lagrange’s Theorem

In this lecture, we study Lagrange’s Theorem which is named after the Italian/French mathematician, physicists and astronomer Joseph-Louis Lagrange. It states that the order of a subgroup $H$ of a finite group $G$ divides the order of $G$. Lagrange’s Theorem has many important applications in group theory. Before we discuss the theorem we first need to study an important class of binary relations called equivalence relations.

Definition. A binary relation $R$ on a nonempty set $S$ is a subset $R\subset S\times S$. If $(a,b)\in R$, we say $a$ is $R$-related to $b$ and write $aRb$. A binary relation $R$ on a set $S$ is called an equivalence relation on $S$ if it satisfies:

1. $aRa$ $\forall a\in S$. ($R$ is reflexive.)

2. $\forall a,b,\in S$, $aRb\Longrightarrow bRa$. ($R$ is symmetric.)

3. $\forall a,b,c\in S$, $aRb$ and $bRc$ $\Longrightarrow$ $aRc$. ($R$ is transitive.)

Examples. 1. Define a binary relation $\equiv\mod n$ on $\mathbb{Z}$, the set of integers by
$$\forall a,b\in\mathbb{Z},\ a\equiv b\mod n\ \mbox{if}\ n|(a-b).$$ Then $\equiv\mod n$ is an equivalence relation in $\mathbb{Z}$, called the congruence relation modulo $n$. If $a\equiv b\mod n$, we say $a$ is congruent to $b$ modulo $n$. Note that $n|(a-b)$ if and only if $a-b=nk$ for some $k\in\mathbb{Z}$ if and only if $a$ and $b$ have the same remainder when they are divided by $n$ if and only if $a-b\in n\mathbb{Z}$ where
$$n\mathbb{Z}=\{nk: k\in\mathbb{Z}\},$$ the set of all integer multiples of $n$. $\forall n\in\mathbb{Z}$, $n\mathbb{Z}$ is a subgroup of the additive group $(\mathbb{Z},+)$.

2. Let $G$ be a group and $H\leq G$. Define a binary relation $R$ on $G$ by
$$\forall a,b\in G,\ aRb\ \mbox{if}\ ab^{-1}\in H.$$ Then $R$ is an equivalence relation on $G$.

Definition. If $R$ is an equivalence relation on a set $S$, then $[a]$, the equivalence class of $a\in S$, is defined by
$$[a]=\{b\in S: bRa\}.$$

Theorem. Let $R$ be an equivalence relation on a set $S$. Then

1. $S=\bigcup_{a\in S}[a]$.

2. $\forall a,b\in S$, either $[a]=[b]$ or $[a]\cap [b]=\emptyset$.

This means that an equivalence relation $R$ on a set $S$ partitions $S$ into equivalence classes. The set of all equivalence classes $\{[a]: a\in S\}$ is denoted by $S/R$ and is called the quotient set of $S$ modulo $R$.

The converse of the above theorem is also true, namely

Theorem. Let $\wp=\{A_i:i\in I\}$ be a partition of a set $S$ i.e. $S=\bigcup_{i\in I}A_i$ and $\forall i\ne j\in I$, $A_i\cap A_j=\emptyset$. Define a binary relation $R$ on $S$ by
$$\forall a,b\in S,\ aRb\ \mbox{if}\ a,b\in A_i\ \mbox{for some}\ i\in I.$$ Then $R$ is an equivalence relation on $S$, called the equivalence relation induced by the partition $\wp$.

Example. Let $f: X\longrightarrow Y$ be a surjective map. Then $\{f^{-1}(y): y\in Y\}$ forms a partition of $X$. The equivalence relation induced by this partition is
$$\ker f=\{(a,b)\in X\times X: f(a)=f(b)\}.$$ This equivalence relation is called the kernel of the function $f$.

Let $G$ be a group and $H\leq G$. Consider the equivalence relation $R$ on $G$ given by
$$\forall a,b\in G,\ aRb\ \mbox{if}\ ab^{-1}\in H.$$
Then for each $a\in G$, $[a]=Ha$ where $Ha=\{ha:h\in H\}$. $Ha$ is called a right coset of $H$ in $G$.

Example. Consider $\equiv\mod n$, the congruence relation modulo $n$ on $\mathbb{Z}$. For each $a\in \mathbb{Z}$, $[a]=n\mathbb{Z}+a$. The right coset $n\mathbb{Z}+a$ is called the congruence class of $a$ modulo $n$.

Now we are ready to discuss Lagrange’s Theorem.

Theorem [Lagrange’s Theorem] If $G$ is a finite group and $H\leq G$, then $|H|||G|$.

Proof. $G=Ha_1\cup Ha_2\cup\cdots\cup Ha_k$ and $Ha_i\cup Ha_j=\emptyset$ if $i\ne j$, $i,j=1,2,\dots, k$. Due to the cancellation law, we see that $|H|=|Ha_i|$ for all $i=1,2,\cdots, k$. Therefore,
\begin{align*}
|G|&=\sum_{i=1}^k|Ha_i|\\
&=\sum_{i=1}^k|H|\\
&=k|H|.
\end{align*}
This completes the proof.

If $G$ is finite, the number of right cosets of $H$ in $G$, namely $\frac{|G|}{|H|}$ is called the index of $H$ in $G$ and is written as $|G:H|$ or $i_G(H)$. Here, we use the notation $|G:H|$.

It should be noted that the converse of Lagrange’s Theorem need not be true. For example, the alternating group of index 4
$$A_4=\{1,(123),(132),(124),(142),(134),(143),(234),(243),(12)(34),(13)(24),(14)(23)\}$$ has no subgroup of order 6 though $|A_4|=12$ and $6|12$.

Theorem. A group $G$ of prime order is cyclic.

Proof. Let $|G|=p$, a prime. Let $H\leq G$. Then by Lagrange’s Theorem, $|H|||G|$ and so either $|H|=1$ or $|H|=p$. If $H\ne\{e\}$, then $H=G$. If $a\ne e\in G$, $\langle a\rangle=G$.

Let $G$ be a finite group and $a\ne e\in G$. Then $H=\langle a\rangle\leq G$. So, $a^m=e$ for some $m\in\mathbb{N}$.

Definition. If $G$ is finite, then the order of $a\ne e\in G$, written $|a|$ or $o(a)$, is the least positive integer $n$ such that $a^n=e$.

Corollary. If $G$ is finite and $a\ne e\in G$, then $|\langle a\rangle|||G|$.

Theorem. If $G$ is a finite group of order $n$, then $a^n=e$ for all $a\in G$.

Proof. Let $a\ne e\in G$ and $|\langle a\rangle|=k$. Then by Lagrange’s Theorem $k|n$ i.e. $n=kl$ for some $l\in\mathbb{N}$. So,
$$a^n=a^{kl}=(a^k)^l=e^l=e.$$