The Curvature of a Surface in Euclidean 3-Space \mathbb{R}^3

In here, it is seen that the curvature of a unit speed parametric curve \alpha(t) in \mathbb{R}^3 can be measured by its acceleration \ddot\alpha(t). In this case, the acceleration happens to be a normal vector field along the curve. Now we turn our attention to surfaces in Euclidean 3-space \mathbb{R}^3 and we would like to devise a way to measure the bending of a surface in \mathbb{R}^3, and it may be achieved by studying the change of a unit normal vector field on the surface. To study the change of a unit normal vector field on a surface, we need to be able to differentiate vector fields. But first let us review the directional derivative you learned in mutilvariable calculus. Let f:\mathbb{R}^3\longrightarrow\mathbb{R} be a differentiable function and \mathbf{v} a tangent vector to \mathbb{R}^3 at \mathbf{p}. Then the directional derivative of f in the \mathbf{v} direction at \mathbf{p} is defined by
\begin{equation} \label{eq:directderiv} \nabla_{\mathbf{v}}f=\left.\frac{d}{dt}f(\mathbf{p}+t\mathbf{v})\right|_{t=0}. \end{equation}
By chain rule, the directional derivative can be written as
\begin{equation} \label{eq:directderiv2} \nabla_{\mathbf{v}}f=\nabla f(\mathbf{p})\cdot\mathbf{v}, \end{equation}
where \nabla f denotes the gradient of f
\nabla f=\frac{\partial f}{\partial x_1}E_1(\mathbf{p})+\frac{\partial f}{\partial x_2}E_2(\mathbf{p})+\frac{\partial f}{\partial x_3}E_3(\mathbf{p}),
where E_1, E_2, E_3 denote the standard orthonormal frame in \mathbb{R}^3. The directional derivative satisfies the following properties.

Theorem. Let f,g be real-valued differentiable functions on \mathbb{R}^3, \mathbf{v},\mathbf{w} tangent vectors to \mathbb{R}^3 at \mathbf{p}, and a,b\in\mathbb{R}. Then

  1. \nabla_{a\mathbf{v}+b\mathbf{w}}f=a\nabla_{\mathbf{v}}f+b\nabla_{\mathbf{w}}f
  2. \nabla_{\mathbf{v}}(af+bg)=a\nabla_{\mathbf{v}}f+b\nabla_{\mathbf{v}}g
  3. \nabla_{\mathbf{v}}fg=(\nabla_{\mathbf{v}}f)g(\mathbf{p})+f(\mathbf{p})\nabla_{\mathbf{v}}g

The properties 1 and 2 are linearity and the property 3 is Leibniz rule. The directional derivative \eqref{eq:directderiv} can be generalized to the covariant derivative \nabla_{\mathbf{v}}X of a vector field X in the direction of a tangent vector \mathbf{v} at \mathbf{p}:
\begin{equation} \label{eq:covderiv} \nabla_{\mathbf{v}}X=\left.\frac{d}{dt}X(\mathbf{p}+t\mathbf{v})\right|_{t=0}. \end{equation}
Let X=x_1E_1+x_2E_2+x_2E_3 in terms of the standard orthonormal frame E_1,E_2,E_3. Then \nabla_{\mathbf{v}}X can be written as
\begin{equation} \label{eq:covderiv2} \nabla_{\mathbf{v}}X=\sum_{j=1}^3\nabla_{\mathbf{v}}x_jE_j. \end{equation}
Here, \nabla_{\mathbf{v}}x_j is the directional derivative of the j-th component function of the vector field X in the \mathbf{v} direction as defined in \eqref{eq:directderiv}. The covariant derivative satisfies the following properties.

Theorem. Let X,Y be vector fields on \mathbb{R}^3, \mathbf{v},\mathbf{w} tangent vectors at \mathbf{p}, f a real-valued function on \mathbb{R}^3, and a,b scalars. Then

  1. \nabla_{\mathbf{v}}(aX+bY)=a\nabla_{\mathbf{v}}X+b\nabla_{\mathbf{v}}Y
  2. \nabla_{a\mathbf{v}+b\mathbf{w}}X=a\nabla_{\mathbf{v}}X+b\nabla_{\mathbf{v}}X
  3. \nabla_{\mathbf{v}}(fX)=(\nabla_{\mathbf{v}}f)X(\mathbf{p})+f(\mathbf{p})\nabla_{\mathbf{v}}X
  4. \nabla_{\mathbf{v}}(X\cdot Y)=(\nabla_{\mathbf{v}}X)\cdot Y+X\cdot\nabla_{\mathbf{v}}Y

The properties 1 and 2 are linearity and the properties 3 and 4 are Leibniz rules.

Hereafter, I assume that surfaces are orientable and have nonvanishing normal vector fields. Let \mathcal{M}\subset\mathbb{R}^3 be a surface and p\in\mathcal{M}. For each \mathbf{v}\in T_p\mathcal{M}, define
\begin{equation} \label{eq:shape} S_p(\mathbf{v})=-\nabla_{\mathbf{v}}N, \end{equation}
where N is a unit normal vector field on a neighborhood of p\in\mathcal{M}. Since N\cdot N=1, (\nabla_{\mathbf{v}}N)\cdot N=-2S_p(\mathbf{v})\cdot N=0. This means that S_p(\mathbf{v})\in T_p\mathcal{M}. Thus, \eqref{eq:shape} defines a linear map S_p: T_p\mathcal M\longrightarrow T_p\mathcal{M}. S_p is called the shape operator of \mathcal{M} at p (derived from N).For each p\in\mathcal{M}, S_p is a symmetric operator, i.e.,
\langle S_p(\mathbf{v}),\mathbf{w}\rangle=\langle S_p(\mathbf{w}),\mathbf{v}\rangle
for any \mathbf{v},\mathbf{w}\in T_p\mathcal{M}.

Let us assume that \mathcal{M}\subset\mathbb{R}^3 is a regular surface so that any differentiable curve \alpha: (-\epsilon,\epsilon)\longrightarrow\mathcal{M} is a regular curve, i.e., \dot\alpha(t)\ne 0 for every t\in(-\epsilon,\epsilon). If \alpha is a differentiable curve in \mathcal{M}\subset\mathbb{R}^3, then
\begin{equation} \label{eq:acceleration} \langle\ddot\alpha,N\rangle=\langle S(\dot\alpha),\dot\alpha\rangle. \end{equation}
\langle\ddot\alpha,N\rangle is the normal component of the acceleration \ddot\alpha to the surface \mathcal{M}. \eqref{eq:acceleration} says the normal component of \ddot\alpha depends only on the shape operator S and the velocity \dot\alpha. If \alpha is represented by arc-length, i.e., |\dot\alpha|=1, then we get a measurement of the way \mathcal{M} is bent in the \dot\alpha direction. Hence we have the following definition:

Definition. Let \mathbf{u} be a unit tangent vector to \mathcal{M}\subset\mathbb{R}^3 at p. Then the number \kappa(\mathbf{u})=\langle S(\mathbf{u}),\mathbf{u}\rangle is called the normal curvature of \mathcal{M} in \mathbf{u} direction. The normal curvature \kappa can be considered as a continuous function on the unit circle \kappa: S^1\longrightarrow\mathbb{R}. Since S^1 is compact (closed and bounded), \kappa attains a maximum and a minimum values, say \kappa_1, \kappa_2, respectively. \kappa_1, \kappa_2 are called the principal curvatures of \mathcal{M} at p. The principal curvatures \kappa_1, \kappa_2 are the eigenvalues of the shape operator S and S can be written as the 2\times 2 matrix
\begin{equation} \label{eq:shape2} S=\begin{pmatrix} \kappa_1 & 0\\ 0 & \kappa_2 \end{pmatrix}. \end{equation}
The arithmetic mean H and the squared Gau{\ss}ian mean K of \kappa_1, \kappa_2
\begin{align} \label{eq:mean} H&=\frac{\kappa_1+\kappa_2}{2}=\frac{1}{2}\mathrm{tr}S,\\ \label{eq:gauss} K&=\kappa_1\kappa_2=\det S \end{align}
are called, respectively, the mean and the Gaußian curvatures of \mathcal{M}. The definitions \eqref{eq:mean} and \eqref{eq:gauss} themselves however are not much helpful for calculating the mean and the Gaußian curvatures of a surface. We can compute the mean and the Gaußian curvatures of a parametric regular surface \varphi: D(u,v)\longrightarrow\mathbb{R}^3 using Gauß’ celebrated formulas
\begin{align} \label{eq:mean2} H&=\frac{G\ell+En-2Fm}{2(EG-F^2)},\\ \label{eq:gauss2} K&=\frac{\ell n-m^2}{EG-F^2}, \end{align}
where
\begin{align*} E&=\langle\varphi_u,\varphi_u\rangle,\ F=\langle\varphi_u,\varphi_v\rangle,\ G=\langle\varphi_v,\varphi_v\rangle,\\ \ell&=\langle N,\varphi_{uu}\rangle,\ m=\langle N,\varphi_{uv}\rangle,\ n=\langle N,\varphi_{vv}\rangle. \end{align*}
It is straightforward to verify that
\begin{equation} \label{eq:normal} |\varphi_u\times\varphi_v|^2=EG-F^2. \end{equation}

Example. Compute the Gaußian and the mean curvatures of helicoid
\varphi(u,v)=(u\cos v,u\sin v, bv),\ b\ne 0.

helicoid

Helicoid

Solution. \begin{align*} \varphi_u&=(\cos v,\sin v,0),\ \varphi_v=(-u\sin v,u\cos v,b),\\ \varphi_{uu}&=0,\ \varphi_{uv}=(-\sin v,\cos v,0),\ \varphi_{vv}=(-u\cos v,-u\sin v,0). \end{align*}
E, F and G are calculated to be
E=1,\ F=0,\ G=b^2+u^2.
\varphi_u\times\varphi_v=(b\sin v,-b\cos v,u), so the unit normal vector field N is given by
N=\frac{\varphi_u\times\varphi_v}{\sqrt{EG-F^2}}=\frac{(b\sin v,-b\cos v,u)}{\sqrt{b^2+u^2}}.
Next, \ell, m,n are calculated to be
\ell=0,\ m=-\frac{b}{\sqrt{b^2+u^2}},\ n=0.
Finally we find the Gaußian curvature K and the mean curvature H:
\begin{align*} K&=\frac{\ell n-m^2}{EG-F^2}=-\frac{b^2}{(b^2+u^2)^2},\\ H&=\frac{G\ell+En-2Fm}{2(EG-F^2)}=0. \end{align*}
Surfaces with H=0 are called minimal surfaces.

For further reading on the topic I discussed here, I recommend:

Barrett O’Neil, Elementary Differential Geometry, Academic Press, 1967

One thought on “The Curvature of a Surface in Euclidean 3-Space \mathbb{R}^3

Leave a Reply to johnwatson Cancel reply

Your email address will not be published. Required fields are marked *