Let \mathcal{L}^{-1}\{f(s)\} denote a function whose Laplace transform is f(s) i.e. if \mathcal{L}\{F(t)\}=f(s) then F(t)=\mathcal{L}^{-1}\{f(s)\}. For example,
\mathcal{L}^{-1}\left\{\frac{1}{s-k}\right\}=e^{kt},\ \mathcal{L}^{-1}\left\{\frac{k}{s^2+k^2}\right\}=\sin kt
F(t) is called the inverse transform of f(s). There is a question that must be addressed. Is the inverse transform of f(s) unique? The answer is not really. For example, we know that F_1(t)=e^{kt} is an inverse transform of \frac{1}{s-k}. Define
F_2(t)=\left\{\begin{aligned}
e^{kt},\ &0<t<2,\ t>2\\
1,\ &t=2
\end{aligned}\right.
The transform of F_2(t) is
\begin{align*}
\mathcal{L}\{F_2(t)\}&=\int_0^\infty e^{-st}F_2(t)dt\\
&=\int_0^2 e^{-st}e^{kt}dt+\int_2^\infty e^{-st}e^{kt}dt\\
&=\frac{1}{s-k}
\end{align*}
So are we in trouble then? Not really. We introduce the following theorem without proof.
Theorem. If two functions F_1(t) and F_2(t) have the same Laplace transform, then F_2(t)=F_1(t)+N(t) where N(t) satisfies
\int_0^T N(t)dt=0
for every positive T.
Such a function N(t) is called a null function. In the above example,
N(t)=\left\{\begin{aligned}
1-e^{2k},\ &t=2\\
0,\ &t\ne 2
\end{aligned}\right.
In view of this theorem the inverse transform is essentially unique because a null function is not important in the applications. For this reason this theorem is called the uniqueness of the inverse transform.
Due to the linearity of \mathcal{L}, we have
\begin{align*}
\mathcal{L}\{AF(t)+BG(t)\}&=A\mathcal{L}\{F(t)\}+B\mathcal{L}\{G(t)\}\\
&=Af(s)+Bg(s)
\end{align*}
Now
\begin{align*}
\mathcal{L}^{-1}\{Af(s)+Bg(s)\}&=AF(t)+BG(t)\\
&=A\mathcal{L}^{-1}\{f(s)\}+B\mathcal{L}^{-1}\{g(s)\}
\end{align*}
so \mathcal{L}^{-1} is also linear.
Suppose that the Laplace transform of F(t) converges when s>k.
f(s)=\int_0^\infty e^{-st}F(t)dt\ (s>k)
Substitute s-a for s. Then
\begin{align*}
f(s-a)&=\int_0^\infty e^{-(s-a)t}F(t)dt\\
&=\int_0^\infty e^{-st}e^{at}F(t)dt\\
&=\mathcal{L}\{e^{at}F(t)\}
\end{align*}
Therefore
\begin{equation}
\mathcal{L}\{e^{at}F(t)\}=f(s-a),\ s>a+k
\end{equation}
Example.
\mathcal{L}\{e^{at}t^n\}=\frac{n!}{(s-a)^{n+1}},\ s>a
Example.
\mathcal{L}\{e^{-at}\cos kt\}=\frac{s+a}{(s+a)^2+k^2},\ s>-a
Partial fractions often play a useful role in finding \mathcal{L}^{-1} as seen in the following examples.
Example. Find \mathcal{L}^{-1}\left\{\frac{s+1}{s^2+2s}\right\}
Solution. s^2+2s=s(s+1) so let
\frac{s+1}{s^2+2s}=\frac{A}{s}+\frac{B}{s+2}
Then we have
\begin{align*}
s+1&=A(s+2)+Bs\\
&=(A+B)s+2A
\end{align*}
This means A+B=1 and 2A=1 i.e. A=B=\frac{1}{2}. Hence
\begin{align*}
\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+2s}\right\}&=\frac{1}{2}\mathcal{L}^{-1}\left\{\frac{1}{2}\right\}+\frac{1}{2}\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}\\
&=\frac{1}{2}+\frac{1}{2}e^{-2t}
\end{align*}
Example. Find \mathcal{L}^{-1}\left\{\frac{a^2}{s(s+a)^2}\right\} (a\ne 0).
Solution. Let
\frac{a^2}{s(s+a)^2}=\frac{A}{s}+\frac{B}{s+a}+\frac{C}{(s+a)^2}
Then we have
a^2=A(s+a)^2+Bs(s+a)+Cs
For s=0, a^2=Aa^2 i.e. A=1. For s=-a, a^2=-Ca i.e. C=-a. For s=a, a^2=3a^2+2a^2B which is reduced to -2a^2=2a^2B i.e. B=-1. Hence
\begin{align*}
\mathcal{L}^{-1}\left\{\frac{a^2}{s(s+a)^2}\right\}&=\mathcal{L}^{-1}\left\{\frac{1}{2}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+a}\right\}-a\mathcal{L}^{-1}\left\{\frac{1}{(s+a)^2}\right\}\\
&=1-e^{-at}-ate^{-at}
\end{align*}
Example. Find \mathcal{L}^{-1}\left\{\frac{s}{(s^2+a^2)(s^2+b^2}\right\} (a^2\ne b^2).
Solution. As usual one can start with
\frac{s}{(s^2+a^2)(s^2+b^2)}=\frac{As+B}{s^2+a^2}+\frac{Cs+D}{s^2+b^2}
However one can write
\begin{align*}
\frac{s}{(s^2+a^2)(s^2+b^2)}&=\frac{s}{a^2-b^2}\left[\frac{s^2+a^2-(s^2+b^2)}{(s^2+a^2)(s^2+b^2)}\right]\\
&=\frac{1}{b^2-a^2}\left[\frac{s}{s^2+a^2}-\frac{s}{s^2+b^2}\right]
\end{align*}
Hence
\mathcal{L}^{-1}\left\{\frac{s}{(s^2+a^2)(s^2+b^2)}\right\}=\frac{1}{b^2-a^2}(\cos at-\cos bt)
Example. Find F(t) is f(s)=\frac{5s+3}{(s-1)(s^2+2s+5)}.
Solution. Let
\frac{5s+3}{(s-1)(s^2+2s+5)}=\frac{A}{s-1}+\frac{Bs+C}{s^2+2s+5}
Then we obtain A=1, B=-1 and C=2.
\begin{align*}
f(s)&=\frac{1}{s-1}-\frac{s-2}{s^2+2s+5}\\
&=\frac{1}{s-1}-\frac{s-2}{(s+1)^2+4}\\
&=\frac{1}{s-1}-\frac{s+1-3}{(s+1)^2+2^2}\\
&=\frac{1}{s-1}-\frac{s+1}{(s+1)^2+2^2}+\frac{3}{2}\frac{2}{(s+1)^2+2^2}
\end{align*}
Hence
F(t)=e^t-e^{-t}\cos 2t+\frac{3}{2}e^{-t}\sin 2t