Proposition 1. For any n X n real or complex matrix X,
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converges and is a continuous function.

Before we prove the proposition, let us recall the norm of a vector x =
(x1,--+,x,) € C" is defined to be
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Define the norm of a matrix in the space M,,(C) as C" i.e. we define
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This norm satisfies the inequaities
) [1X + Y|l < [IXI[+ Y]]
5) XY < XYl
for all X,Y € M,(C). The inequality (4) is simply a triangle inequality and it can
be shown by the triangle inequality for the norm (2). The inequality (5) may be
viewed as a generalized Cauchy-Schwarz inequality and it can be shown by the
Cauchy-Schwarz inequality for the norm (2). The norm (3) on M,(C) is called

the Hilbert-Schmidt norm.
Now we are ready proove the proposition.

Proof. By the inequality (5), we have || X™|| < [|X||™, hence we obtain
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Therefore eX = Z — converges absolutely and so it converges.
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For continuity, X™ is a continuous function of X so the partial sums
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are also continuous. Note that the sequence of functions {s,} converges uni-

formly on the compact set {||X|| < R} and hence the sum is continuous. 0



