Proposition 1. For any $n \times n$ real or complex matrix *X*,

(1)
$$e^X := \sum_{m=0}^{\infty} \frac{X^m}{m!}$$

converges and is a continuous function.

Before we prove the proposition, let us recall the norm of a vector $x = (x_1, \dots, x_n) \in \mathbb{C}^n$ is defined to be

(2)
$$||x|| = \sqrt{\langle x, x \rangle} = \left(\sum_{k=1}^{n} |x_k|^2\right)^{1/2}$$

Define the norm of a matrix in the space $M_n(\mathbb{C})$ as \mathbb{C}^{n^2} i.e. we define

(3)
$$||X|| \left(\sum_{k,l=1}^{n} |X_{kl}|^2\right)^{1/2}$$

This norm satisfies the inequaities

(4)
$$||X + Y|| \le ||X|| + ||Y||$$

(5)
$$||XY|| \le ||X||||Y||$$

for all $X, Y \in M_n(\mathbb{C})$. The inequality (4) is simply a triangle inequality and it can be shown by the triangle inequality for the norm (2). The inequality (5) may be viewed as a generalized Cauchy-Schwarz inequality and it can be shown by the Cauchy-Schwarz inequality for the norm (2). The norm (3) on $M_n(\mathbb{C})$ is called the *Hilbert-Schmidt norm*.

Now we are ready proove the proposition.

Proof. By the inequality (5), we have $||X^m|| \le ||X||^m$, hence we obtain

$$\sum_{m=0}^{\infty} \left| \left| \frac{X^m}{m!} \right| \right| \le \sum_{m=0}^{\infty} \frac{||X||^m}{m!} = e^{||X||} < \infty.$$

Therefore $e^{X} = \sum_{m=0}^{\infty} \frac{X^{m}}{m!}$ converges absolutely and so it converges.

For continuity, X^m is a continuous function of X so the partial sums

$$s_n := \sum_{m=0}^n \frac{X^m}{m!}$$

are also continuous. Note that the sequence of functions $\{s_n\}$ converges uniformly on the compact set $\{||X|| \le R\}$ and hence the sum is continuous.

1