GROUP THEORY
 PROBLEM SET 9
 THE ISOMORPHISM THEOREMS, DIRECT PRODUCTS \& FINITELY GENERATED ABELIAN GROUPS

(1) Let G be the group of all real-valued functions on $[0,1]$, where we define, for $f, g \in G$, addition by $(f+g)(x)=$ $f(x)+g(x)$ for every $x \in[0,1]$. If $N=\left\{f \in G: f\left(\frac{1}{4}\right)=0\right\}$, prove that $G / N \cong(\mathbb{R},+)$.
(2) Let G be the group of nonzero real numbers under multiplication and let $N=\{1,-1\}$. Prove that $G / N \cong\left(\mathbb{R}^{+}, \cdot\right)$ where \mathbb{R}^{+}is the set of all positive real numbers.
(3) If G_{1}, G_{2} are two groups and $G=G_{1} \times G_{2}=\{(a, b): a \in$ $\left.G_{1}, b \in G_{2}\right\}$, where we define $(a, b)(c, d)=(a c, b d)$, show that:
(a) $N=\left\{\left(a, e_{2}\right): a \in G_{1}\right\}$, where e_{2} is the unit element of G_{2}, is a normal subgroup of G.
(b) $N \cong G_{1}$.
(c) $G / N \cong G_{2}$.
(4) If G is an abelian group of order $p_{1} p_{2} \cdots p_{k}$, where $p_{1}, p_{2}, \cdots, p_{k}$ are distinct primes, prove that G is cyclic.
(5) Find all abelian groups, up to isomorphism, of order $2^{3} \cdot 3^{4}$. 5^{2}.
(6) Let G be a group and let $A, B \triangleleft G$ such that $G=A B$ and $A \cap B=\{e\}$. Then G is said to be the internal direct product of A and B.
(a) Each element $g \in G$ is uniquely represented as $g=a b$ for some $a \in A$ and $b \in B$.
(b) For any $a \in A$ and $b \in B, a b=b a$.
(c) Show that $G \cong A \times B$.
(7) If G is an abelian group and if G has an element of order m and one of order n, where m and n are relatively prime, prove that G has an element of order $m n$.

