GROUP THEORY PROBLEM SET 9 THE ISOMORPHISM THEOREMS, DIRECT PRODUCTS & FINITELY GENERATED ABELIAN GROUPS

- (1) Let *G* be the group of all real-valued functions on [0, 1], where we define, for $f, g \in G$, addition by (f + g)(x) = f(x) + g(x) for every $x \in [0, 1]$. If $N = \{f \in G : f(\frac{1}{4}) = 0\}$, prove that $G/N \cong (\mathbb{R}, +)$.
- (2) Let *G* be the group of nonzero real numbers under multiplication and let $N = \{1, -1\}$. Prove that $G/N \cong (\mathbb{R}^+, \cdot)$ where \mathbb{R}^+ is the set of all positive real numbers.
- (3) If G_1, G_2 are two groups and $G = G_1 \times G_2 = \{(a, b) : a \in G_1, b \in G_2\}$, where we define (a, b)(c, d) = (ac, bd), show that:
 - (a) $N = \{(a, e_2) : a \in G_1\}$, where e_2 is the unit element of G_2 , is a normal subgroup of G.
 - (b) $N \cong G_1$.
 - (c) $G/N \cong G_2$.
- (4) If *G* is an abelian group of order $p_1p_2 \cdots p_k$, where p_1, p_2, \cdots, p_k are distinct primes, prove that *G* is cyclic.
- (5) Find all abelian groups, up to isomorphism, of order $2^3 \cdot 3^4 \cdot 5^2$.
- (6) Let *G* be a group and let $A, B \triangleleft G$ such that G = AB and $A \cap B = \{e\}$. Then *G* is said to be the *internal direct product* of *A* and *B*.
 - (a) Each element $g \in G$ is uniquely represented as g = ab for some $a \in A$ and $b \in B$.
 - (b) For any $a \in A$ and $b \in B$, ab = ba.
 - (c) Show that $G \cong A \times B$.
- (7) If G is an abelian group and if G has an element of order m and one of order n, where m and n are relatively prime, prove that G has an element of order mn.