GROUP THEORY PROBLEM SET 8 QUOTIENT GROUPS

(1) It was discussed in my lecture note that if $N \lhd G$, then right coset multiplication is well-defined by the equation

$$(1) NaNb = Nab.$$

Show that if $N \leq G$ and right coset multiplication is welldefined by the equation (1), then $N \triangleleft G$.

- (2) Prove that subgroup of a cyclic group is also cyclic. **Hint:** This is similar to # 3 of Problem Set 3.
- (3) Show that A_n is a normal subgroup of S_n and compute S_n/A_n , that is, find a known group to which S_n/A_n is isomorphic.
- (4) Let $N \triangleleft G$. If m = |G : N| then show that $a^m \in N$ for every $a \in G$.
- (5) If G is a cyclic group and N is a subgroup of G, show that G/N is a cyclic group.
- (6) If *G* is an abelian group and *N* is a subgroup of *G*, show that G/N is an abelian group.
- (7) Show that if G/Z(G) is cyclic, then G is abelian.
- (8) If *G* is a group and $N \triangleleft G$ is such that G/N is abelian, prove that $aba^{-1}b^{-1} \in N$ for all $a, b \in G$.
- (9) If *G* is a group and $N \triangleleft G$ is such that $aba^{-1}b^{-1} \in N$ for all $a, b \in G$, prove that G/N is abelian.