GROUP THEORY PROBLEM SET 7 NORMAL SUBGROUPS

- (1) Recall that $N \leq G$ is a normal subgroup of G if $\forall g \in G$, $g^{-1}Ng \subset N$. Use this definition to prove that $N \leq G$ is a normal subgroup of G if and only if $\forall g \in G$, gN = Ng.
- (2) Show that $Z(D_4) = \{1, \sigma^2\}.$
- (3) Show that $H = \{1, \tau\}$ is not a normal subgroup of D_4 .
- (4) Prove that the center *Z*(*G*) of a group *G* is a normal subgroup of *G*.
- (5) Prove that if $N \leq Z(G)$ then $N \triangleleft G$.
- (6) If $N \triangleleft G$ and $\varphi : G \longrightarrow G'$ is a homomorphism of *G* onto *G'*, prove that $\varphi(N) \triangleleft G'$.
- (7) If $N \triangleleft G$ and $M \triangleleft G$, then

$$MN = \{mn : m \in M, n \in N\}$$

is a normal subgroup of *G*.

- (8) If $M \triangleleft G$ and $N \triangleleft G$, prove that $M \cap N \triangleleft G$.
- (9) If *H* is a subgroup of *G* and $N = \bigcap_{a \in G} a^{-1}Ha$, prove that $N \triangleleft G$.
- (10) If *H* is a subgroup of *G*, let $N(H) = \{a \in G : a^{-1}Ha = H\}$. Prove that:
 - (a) N(H) is a subgroup of G and $H \subset N(H)$.
 - (b) $H \triangleleft N(H)$.
 - (c) If *K* is a subgroup of *G* such that $H \triangleleft K$, then $K \subseteq N(H)$. This means that N(H) is the largest subgroup of *G* in which *H* is normal. N(H) is called the *normalizer* of *H*.
- (11) If $M \triangleleft G$, $N \triangleleft G$, and $M \cap N = \{e\}$, show that for $m \in M$, $n \in N$, mn = nm.
- (12) If $N \triangleleft G$ and $H \leq G$, show that $H \cap N \triangleleft H$.