GROUP THEORY PROBLEM SET 6 HOMOMORPHISMS

- (1) Recall that $G \cong G'$ means that *G* is isomorphic to *G'*. Prove that for all groups G_1, G_2, G_3 :
 - (a) $G_1 \cong G_1$.
 - (b) $G_1 \cong G_2$ implies that $G_2 \cong G_1$.
 - (c) $G_1 \cong G_2$, $G_2 \cong G_3$ implies that $G_1 \cong G_3$.
- (2) Let *G* be any group and *A*(*G*) the set of all 1-1 mappings of *G*, as a set, onto itself. Let $a \in G$ be fixed. Define $L_a : G \longrightarrow G$ by $L_a(x) = xa^{-1}$ for each $x \in G$. Prove that:
 - (a) $L_a \in A(G)$.
 - (b) $L_a L_b = L_{ab}$.
 - (c) The mapping $\psi : G \longrightarrow A(G)$ defined by $\psi(a) = L_a$ is a monomorphism of *G* into A(G).
- (3) Show that the inner automorphism $\varphi : G \longrightarrow G$ of a group *G* induced by $a \in G$ defined by

$$\varphi(x) = a^{-1}xa, \ \forall x \in G$$

is actually an isomorphism.

- (4) Find an isomorphism of $(\mathbb{R}, +)$ onto (\mathbb{R}^+, \cdot) .
- (5) If *G* is a finite abelian group of order *n* and $\varphi : G \longrightarrow G$ is defined by $\varphi(a) = a^m$ for all $a \in G$, find the necessary and sufficient condition that φ be an isomorphism of *G* onto itself.
- (6) If *G* is abelian and $\varphi : G \longrightarrow G'$ is a homomorphism of *G* onto *G'*, prove that *G'* is abelian.