GROUP THEORY
 PROBLEM SET 5 CONGRUENCE MODULO n

(1) Prove that if $a \equiv b \bmod n$ and $c \equiv d \bmod n$, then $a+c \equiv$ $b+d \bmod n$ and $a c \equiv b d \bmod n$.
(2) If G is a finite set closed under an associative operation such that $a x=a y$ forces $x=y$ and $u a=w a$ forces $u=w$, for every $a, x, y, u, w \in G$, prove that G is a group.
(3) Using Fermat's Theorem, find the remainder of 3^{47} when it is divided by 23 .
(4) Using Fermat's Theorem, find the remiainder of 37^{49} when it is divided by 7 .
(5) Compute the remainder of $2^{\left(2^{17}\right)}+1$ when divided by 19 .
(6) Compute $\varphi\left(p^{2}\right)$ where p is a prime.
(7) Compute $\varphi(p q)$ where both p and q are primes.
(8) If p is a prime, show that the only solutions of $x^{2} \equiv 1 \bmod p$ are $x \equiv 1 \bmod p$ or $x \equiv-1 \bmod p$.
(9) If G is a finite abelian group and a_{1}, \cdots, a_{n} are all its elements, show that $x=a_{1} a_{2} \cdots a_{n}$ must satisfy $x^{2}=e$.
(10) Using the results of Questions (8) and (9), prove that if p is an odd prime number, then $(p-1)!\equiv-1 \bmod p$. This is known as Wilson's Theorem.
(11) In \mathbb{Z}_{41}^{*}, show that there is an element $[a]$ such that $[a]^{2}=$ $[-1]$, i.e. there is an integer a such that $a^{2} \equiv-1 \bmod 41$.
(12) Verify Euler's Theorem for $n=14$ and $a=3$, and for $n=14$ and $a=5$.
(13) If p is a prime number of the form $4 n+3$, show that we cannot solve

$$
x^{2} \equiv-1 \bmod p
$$

Hint: Assume that there are solutions of $x^{2} \equiv-1 \bmod p$ where is p is a prime of the form $4 n+3$. Then use Fermat's Theorem to get a contradiction.
(14) Show that the nonzero elements in \mathbb{Z}_{n} form a group under the product $[a][b]=[a b]$ if and only if n is a prime.

