GROUP THEORY PROBLEM SET 4 LAGRANGE'S THEOREM

- (1) Let *G* be a group and $H \leq G$.
 - (a) Define a binary relation R on G by

 $\forall a, b \in G, aRb \text{ if } a^{-1}b \in H.$

Show that *R* is an equivalence relation on *G*.

- (b) Show that for each *a* ∈ *G*, [*a*] = *aH*, a left coset of *H* in *G*.
- (2) Let $\{A_i : i \in I\}$ be a partition of a set *S* i.e. $S = \bigcup_{i \in I} A_i$ and $\forall i \neq j \in I, A_i \cap A_j = \emptyset$. Define a binary relation *R* on *S* by

 $\forall a, b \in S, aRb \text{ if } a, b \in A_i \text{ for some } i \in I.$

Show that R is an equivalence relation on S.

(3) Define a binary relation \sim on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ by

$$(a,b) \sim (c,d)$$
 if $ad = bc$

for any $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Show that \sim is an equivalence relation on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. We denote by $\frac{a}{b}$ the equivalence class [(a, b)]. For instance,

$$[(1,2)] = \{(1,2), (2,4), (3,6), (4,8), \cdots\}$$

and we denote [(1,2)] by $\frac{1}{2}$. Hence, we see that

 $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) / \sim = \mathbb{Q},$

the set of all rational numbers. This is how we construct the rational numbers from the integers.

(4) If every right coset of *H* in *G* is a left coset of *H* in *G*, then show that $aHa^{-1} = H$ for all $a \in G$.