GROUP THEORY
 PROBLEM SET 3 SUBGROUPS

(1) Let G be a group. Then show that the center of $G, Z(G)=$ $\{z \in G: z x=x z \forall x \in G\}$ is a subgroup of G.
(2) Let G be a group and $H \leq G$. Show that $\forall a \in G, a^{-1} H a=$ $\left\{a^{-1} h a: h \in H\right\}$ is also a subgroup of G.
(3) Show that every subgroup of $(\mathbb{Z},+)$ is of the form $n \mathbb{Z}=\{n x$: $x \in \mathbb{Z}\}, n \geq 0$.
(4) Show that $b \mathbb{Z} \subset a \mathbb{Z} \Longleftrightarrow a \mid b$.
(5) Find all subgroups of $\left(\mathbb{Z}_{4},+\right)$.
(6) Find all subgroups of $\left(\mathbb{Z}_{6},+\right)$.
(7) If A, B are subgroups of G, show that $A \cap B$ is a subgroup of G.
(8) Prove that $Z(G)=\bigcap_{a \in G} C(a)$.
(9) Show that $a \in Z(G)$ if and only if $C(a)=G$.
(10) If G is an abelian group and if $H=\left\{a \in G: a^{2}=e\right\}$, show that $H \leq G$.
(11) Let G be a group and $H \leq G$. Let $H x=\{h x: h \in H\}$. Show that $\forall a, b \in G$, either $H a=H b$ or $H a \cap H b=\emptyset$.

The result in this problem will be important in studying Lagrange's Theorem and normal subgroups.

