GROUP THEORY PROBLEM SET 3 SUBGROUPS

- (1) Let *G* be a group. Then show that the center of *G*, Z(G) = $\{z \in G : zx = xz \ \forall x \in G\}$ is a subgroup of *G*.
- (2) Let *G* be a group and $H \leq G$. Show that $\forall a \in G$, $a^{-1}Ha =$ $\{a^{-1}ha : h \in H\}$ is also a subgroup of G.
- (3) Show that every subgroup of $(\mathbb{Z}, +)$ is of the form $n\mathbb{Z} = \{nx :$ $x \in \mathbb{Z}$, $n \ge 0$.
- (4) Show that $b\mathbb{Z} \subset a\mathbb{Z} \iff a|b$.
- (5) Find all subgroups of $(\mathbb{Z}_4, +)$.
- (6) Find all subgroups of $(\mathbb{Z}_6, +)$.
- (7) If A, B are subgroups of G, show that $A \cap B$ is a subgroup of G.
- (8) Prove that $Z(G) = \bigcap_{a \in G} C(a)$. (9) Show that $a \in Z(G)$ if and only if C(a) = G.
- (10) If *G* is an abelian group and if $H = \{a \in G : a^2 = e\}$, show that $H \leq G$.
- (11) Let *G* be a group and $H \leq G$. Let $Hx = \{hx : h \in H\}$. Show that $\forall a, b \in G$, either Ha = Hb or $Ha \cap Hb = \emptyset$.

The result in this problem will be important in studying Lagrange's Theorem and normal subgroups.