GROUP THEORY PROBEM SET 2 EXAMPLES OF GROUPS

- (1) Determine if each set *G* with the operation * indicated form a group. If not, point out which of the group axioms fail(s).
 - (a) $G = \mathbb{Z}, a * b = a b$.
 - (b) $G = \mathbb{Z}, a * b = a + b + ab$.
 - (c) $G = \mathbb{N} \cup \{0\}$, a * b = a + b. Here \mathbb{N} denotes the set of all natural numbers $\{1, 2, 3, \dots\}$.
 - (d) $G = \text{set of all rational numbers} \neq -1, a * b = a + b + ab.$
 - (e) $G = \text{set of all rational numbers with denominator divis$ ible by 5 (written so that numerator and denominatorare relatively prime), <math>a * b = a + b.
 - (f) *G*, a set having more than one element, a * b = a for all $a, b \in G$.
- (2) If *G* is an abelian group, prove that $(a * b)^n = a^n * b^n \forall n \in \mathbb{Z}$. **Hint:** Use the mathematical induction.
- (3) If *G* is any group and $a, b, c \in G$, show that if a * b = a * c, then b = c, and if b * a = c * a, then b = c.
- (4) If G is a group in which $a^2 = e \ \forall a \in G$, show that G is abelian.
- (5) Show that any group of order 4 or less is abelian.
- (6) Express $(a * b)^{-1}$ in terms of a^{-1} and b^{-1} .
- (7) In any group *G*, prove that $(a^{-1})^{-1} = a \quad \forall a \in G$.
- (8) Show that a group of order 5 must be abelian.
- (9) If *G* is any group, show that
 - (a) *e* is unique.
 - (b) Given $a \in G$, $a^{-1} \in G$ is unique.

(10) Complete the following multiplication table for D_3 .

•	e	ρ	$ ho^2$	μ_1	μ_2	μ_3
е						
ρ						
$ ho^2$						
μ_1						
μ_2						
μ_3						

(11) Complete the following multiplication table for D_4 .

•	e	ρ	$ ho^2$	$ ho^3$	μ_1	μ_2	δ_1	δ_2
е								
ρ								
ρ^2								
ρ^3								
μ_1								
μ_2								
δ_1								
δ_2								