GROUP THEORY PROBLEM SET 1 BASIC NUMBER THEORY

(1) Prove the following properties. m, n, q, μ, v in the statements (a)-(f) are all integers.
(a) $1 \mid n \forall n$.
(b) If $m \neq 0$ then $m \mid 0$. Explain why $0 \chi 0$.
(c) If $m \mid n$ and $n \mid q$, then $m \mid q$.
(d) If $m \mid n$ and $m \mid q$ then $m \mid(\mu n+v q) \forall \mu, v$.
(e) If $m \mid 1$ then $m= \pm 1$.
(f) If $m \mid n$ and $n \mid m$ then $m= \pm n$.
(2) Prove that the integers a and b are relatively prime if and only if $1=m a+n b$ for some m and n.
(3) Prove that if $(a, b)=1$ and $a \mid b c$ then $a \mid c$.
(4) Prove that if b and c are both relatively prime to a, then $b c$ is also relatively prime to a.

