FUNCTIONAL ANALYSIS PROBLEM SET 5

- (1) Let *X* be the vector space of all complex 2×2 matrices and define $T : X \longrightarrow X$ by Tx = bx, where $b \in X$ is fixed and bx denotes the usual matrix multiplication. Show that *T* is linear. Under what condition does T^{-1} exist?
- (2) Let $T : \mathcal{D}(T) \longrightarrow Y$ be a linear operator whose inverse exists. If $\{x_1, \dots, x_n\}$ is a linearly independent set in $\mathcal{D}(T)$, show that the set $\{Tx_1, \dots, Tx_n\}$ is linearly independent.
- (3) Let $T : X \longrightarrow Y$ be a linear operator and dim $X = \dim Y = n < \infty$. Show that $\Re(T) = Y$ if and only if T^{-1} exists.
- (4) Let X and Y be normed spaces. Show that a linear operator
 T: X → Y is bounded if and only if T maps bounded sets in X into bounded sets in Y.
- (5) If $T \neq O$ is a bounded linear operator, show that for any $x \in \mathcal{D}(T)$ such that ||x|| < 1 we have the strict inequality ||Tx|| < ||T||.
- (6) Define an operator $T: \ell^{\infty} \longrightarrow \ell^{\infty}$ by

$$T(\xi_j) = \left(\frac{\xi_j}{j}\right)$$

for each $(\xi_i) \in \ell^{\infty}$. Show that *T* is linear and bounded.

(7) Let *T* be a bounded linear operator from a normed space *X* onto a normed space *Y*. Suppose that there is a positive *b* such that

$||Tx|| \ge b||x||$

for all $x \in X$. Show that $T^{-1}: Y \longrightarrow X$ exists and bounded.