Discrete Mathematics Problem Set 9 Logic and Computer

- 1. (a) Convert the binary numeral 111001 to decimal, showing your work.
 - (b) Convert the decimal numeral 87 to binary, showing your work.
- 2. Hexagonal notation is a particular way of writing base-16 numerals, using sixteen hexadecimal digits: 0 through 9 with the same meanings they have in decimal, and A through F to represent decimal 10 through 15. The following table shows the sixteen decimal digits and their corresponding binary and decimal notations.

Hex	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
С	1100	12
D	1101	13
E	1110	14
F	1111	15

It is easy to translate back and forth between hexadecimal and binary, simply by substituting hexadecimal digits for blocks of four bits or vice versa. For example, since 8 in hex is 1000 in binary and A in hex is 1010 in binary, the four-hex-digit numeral 081A in binary is

000 01000 0001 1010

where small spaces between block of four bits are introduced for readability.

- (a) Write the binary numeral 1110000110101111 in hexadecimal and in decimal.
- (b) Write decimal 1303 in binary and in hexadecimal.
- (c) Write hexadecimal ABCD in binary and in decimal.
- 3. Write formula involving only the | operator that is equivalent to $p \lor q$.
- 4. Let $p \downarrow q$ denote the "nor" operator. $p \downarrow q$ is true if and only if neither p nor q is true i.e $p \downarrow q \equiv \neg (p \lor q)$.
 - (a) Write the truth table for $p \downarrow q$.
 - (b) Using only the \downarrow operator, write a formular equivalent to $\neg p$.
 - (c) Show that \lor and \land can also be expressed using just the \downarrow operator.