Discrete Mathematics Problem Set 6 Graphs and Functions

- 1. Let $f : A \longrightarrow B$ be an invertible function. Then show that
 - (a) $f^{-1} \circ f = I_A$ (b) $f \circ f^{-1} = I_B$

where $I_A : A \longrightarrow A$ is the identity map defined by $I_A(x) = x$ for each $x \in A$.

2. Let $f : A \longrightarrow B$ and $g : B \longrightarrow C$ be bijiective. Show that

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

3. Suppose that $f : A \longrightarrow B$ and $g : B \longrightarrow C$ are functions. Prove that if $g \circ f$ is injective, then f is injective; prove that if $g \circ f$ is surjective, then g is surjective. Hence we can conclude that if $g \circ f$ is bijective, then f is injective and g is surjective. Give an example to show that the converse of this last statement does not hold.