Differential Equations Problem Set 8 Non-Homogeneous Second-Order Differential Equations:
 The Method of Undetermined Coefficients

1. Determine the general solution of the given differential equation.
(a) $\ddot{x}-2 \dot{x}-3 x=-3 t e^{-t}$
(b) $\ddot{x}+2 \dot{x}=3+4 \sin (2 t)$
(c) $\ddot{x}+x=3 \sin (2 t)+t \cos (2 t)$
(d) $\ddot{x}+\dot{x}-6 x=12 e^{3 t}+12 e^{-2 t}$
(e) $\ddot{x}+3 \dot{x}=2 t^{4}+t^{2} e^{-3 t}+\sin (3 t)$

Hint: Suppose that $X_{1}(t), X_{2}(t), X_{3}(t)$ are solutions of

$$
\begin{aligned}
& \ddot{x}+3 \dot{x}=2 t^{4} \\
& \ddot{x}+3 \dot{x}=t^{2} e^{-3 t} \\
& \ddot{x}+3 \dot{x}=\sin (3 t)
\end{aligned}
$$

respectively. Then $X_{1}(t)+X_{2}(t)+X_{3}(t)$ is a solution of the equation

$$
\ddot{x}+3 \dot{x}=2 t^{4}+t^{2} e^{-3 t}+\sin (3 t)
$$

(f) $\dddot{x}-3 \ddot{x}+3 \dot{x}-1=4 e^{t}$

Hint: You probably haven't dealt with a linear differential equation of order higher than 2. However the principle of solving the general solution of a Homogeneous higher order linear differential equation is essentially the same as the second-order case, namely using the characteristic equation.
2. Find the solution of the given initial value problem.
(a) $\dddot{x}+4 x=t^{2}+3 e^{t}$ with $x(0)=0, \dot{x}(0)=2$
(b) $\ddot{x}+4 x=3 \sin (2 t)$ with $x(0)=2, \dot{x}(0)=-1$
(c) $\ddot{x}+2 \dot{x}+5 x=4 e^{-t} \cos (2 t)$ with $x(0)=1, \dot{x}(0)=0$

