Differential Equations Problem Set 7 Second-Order Linear Equations and Linear Algebra

1. For each of the following linear systems, find the general solution.
(a) $\frac{d X}{d t}=\left(\begin{array}{cc}3 & 2 \\ 0 & -2\end{array}\right) X$
(b) $\frac{d X}{d t}=\left(\begin{array}{ll}-4 & -2 \\ -1 & -3\end{array}\right) X$
2. Prove the following theorem: Suppose that $X(t)$ is a complex-valued solution to a linear system $\frac{d X}{d t}=A X$ where the 2×2 matrix A has all real entries. Then the real part $X_{\mathrm{re}}(t)$ and the imaginary part X_{im} of $X(t)$ are both solutions of the linear system.
Hint: Write $X(t)=X_{\mathrm{re}}(t)+i X_{\mathrm{im}}(t)$.
3. For each of the following linear systems, use the theorem in \#2 to find the real general solution. Note that the matrix in each system has complex eigenvalues.
(a) $\frac{d X}{d t}=\left(\begin{array}{cc}-1 & 2 \\ -1 & -1\end{array}\right) X$
(b) $\frac{d X}{d t}=\left(\begin{array}{cc}1 & 4 \\ -3 & 2\end{array}\right) X$
4. Suppose that $\frac{d X}{d t}=A X$ is a linear system in which the 2×2 matrix A has a repeated eigenvalue λ. Let v_{1} be an eigenvector associated with λ. Then $X_{1}(t)=e^{\lambda t} v_{1}$ is a solution of the system. Show that

$$
X_{2}(t)=e^{\lambda t}\left(t v_{1}+v_{2}\right),
$$

where v_{2} satisfies $(A-\lambda I) v_{2}=v_{1}$, is also a solution of the linear system. Since $X_{1}(t)$ and $X_{2}(t)$ are linearly independent, the general solution $X(t)$ is given by

$$
X(t)=A_{1} e^{\lambda t} v_{1}+A_{2} e^{\lambda t}\left(t v_{1}+v_{2}\right)
$$

5. For each of the following linear systems, use \# 4 to find the general solution. Note that the matrix in each system has a repeated eigenvalue.
(a) $\frac{d X}{d t}=\left(\begin{array}{cc}-3 & 0 \\ 1 & -3\end{array}\right) X$
(b) $\frac{d X}{d t}=\left(\begin{array}{cc}-2 & -1 \\ 1 & -4\end{array}\right) X$
