Differential Equations Problem Set 6 Harmonic Motion

1. Consider harmonic oscillator

$$
m \ddot{x}+c \dot{x}+k x=0
$$

with mass m, damping coefficient c, and spring constant (also called stiffness) k. For the values specified along with given initial conditions, solve the equation of harmonic oscillator.
(a) $m=1, c=8, k=7$ with initial conditions $x(0)=-1, \dot{x}(0)=5$
(b) $m=1, c=6, k=8$ with initial conditions $x(0)=1, \dot{x}(0)=0$
(c) $m=1, c=4, k=5$ with initial conditions $x(0)=1, \dot{x}(0)=0$
(d) $m=1, c=0, k=8$ with initial conditions $x(0)=1, \dot{x}(0)=4$
(e) $m=2, c=3, k=1$ with initial conditions $x(0)=0, \dot{x}(0)=3$
(f) $m=9, c=6, k=1$ with initial conditions $x(0)=1, \dot{x}(0)=1$
(g) $m=2, c=0, k=3$ with initial conditions $x(0)=2, \dot{x}(0)=-3$
(h) $m=2, c=1, k=3$ with initial conditions $x(0)=0, \dot{x}(0)=-3$
2. Harmonic oscillator

$$
m \ddot{x}+c \dot{x}+k x=0
$$

has one real solution $e^{-\frac{c}{2 m} t}$ if $c^{2}-4 m k=0$. Show that $t e^{-\frac{c}{2 m} t}$ is also a solution.

