Differential Equations Problem Set 15
 The Laplace Transform: Differential Equations with Variable Coefficients

1. Solve the following equations.
(a) $\ddot{X}(t)+t \dot{X}(t)-2 X(t)=1, X(0)=\dot{X}(0)=0$.
(b) $t \ddot{X}(t)+(2 t+3) \dot{X}(t)+(t+3) X(t)=e^{-t}$
(c) $t \ddot{X}(t)+(1-a-t) \dot{X}(t)+a X(t)=t-1, X(0)=0, a>0$ and $a \neq 1$.
(d) $t \ddot{X}(t)-(2 t+1) \dot{X}(t)+(t+1) X(t)=0, X(0)=0$.
2. The Laplace transform of Bessel's equation

$$
t^{2} \ddot{X}(t)+t \dot{X}(t)+\left(t^{2}-n^{2}\right) X(t)=0
$$

is

$$
\left(s^{2}+1\right) x^{\prime \prime}(s)+3 s x^{\prime}(s)+\left(1-n^{2}\right) x(s)=0
$$

This equation is unfortunately not any easier to solve than Bessel's equation. Let $X(t)=t^{-n} Y(t)$.
(a) Show that $Y(t)$ satisfies the equation

$$
t \ddot{Y}(t)+(1-2 n) \dot{Y}(t)+t Y(t)=0
$$

(b) Solve the equation in part (a) with condition $Y(0)=0$ and derive the solution $X(t)=C J_{n}(t)$ of Bessel's equation where $J_{n}(t), n=0,1,2, \cdots$ is Bessel fuction of the first kind

$$
J_{n}(t)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(n+k)!}\left(\frac{t}{2}\right)^{n+2 k}
$$

