Differential Equations Problem Set 11
 The Laplace Transform:
 Transforms of Derivatives

1. Obtain these transforms with the aid of
$\mathscr{L}\left\{F^{(n+1)}(t)\right\}=s^{n+1} \mathscr{L}\{F(t)\}-s^{n} F(0)-s^{n-1} F^{\prime}(0)-\cdots-F^{(n)}(0)$
(a) $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}$
(b) $\mathscr{L}\{\sinh k t\}=\frac{k}{s^{2}-k^{2}}$
(c) $\mathscr{L}\{\cosh k t\}=\frac{s}{s^{2}-k^{2}}$
(d) $\mathscr{L}\left\{t e^{k t}\right\}=\frac{1}{(s-k)^{2}}$
2. The Gamma function is defined by

$$
\Gamma(r)=\int_{0}^{\infty} x^{r-1} e^{-x} d x(r>0)
$$

(a) Use integration by parts to show that the Gamma function satisfies

$$
\Gamma(r+1)=r \Gamma(r)
$$

(b) Show that $\Gamma(1)=1$, and hence that $\Gamma(n+1)=n$! when $n=$ $1,2,3, \cdots$.
(c) Given that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$, find $\Gamma\left(\frac{3}{2}\right)$ and $\Gamma\left(\frac{5}{2}\right)$.

