Differential Equations Problem Set 1 First-Order Differential Equations: Separable, Linear

1. Solve each of the following differential equation.
(a) $\frac{d y}{d t}=2 y+1$
(b) $\frac{d y}{d t}=\frac{t^{2}+1}{y^{4}+3 y}$
(c) $\frac{d y}{d x}=\frac{x^{2}}{y\left(1+x^{3}\right)}$
(d) $\frac{d y}{d x}=\frac{x^{2}(1+y)}{y^{2}(1-x)}$
(e) $\sqrt{1-y^{2}} d x+\sqrt{1-x^{2}} d y=0$
(f) $\frac{d y}{d t}=-\frac{y}{t}+2$
(g) $\frac{d y}{d t}=-2 y+\sin t$
(h) $y^{\prime}-y=e^{2 x}$
(i) $\frac{d y}{d x}+2 y \tan x=\sin x$
2. Solve each of the following initial value problems.
(a) $\frac{d y}{d t}=t y^{2}+2 y^{2}, y(0)=1$
(b) $y^{\prime}+y \tan x=\sin 2 x, y(0)=1$
(c) $\frac{d y}{d t}=\frac{2 y}{t}+2 t^{2}, y(-2)=4$
(d) $x \frac{d y}{d x}+y=x \ln x, y(1)=0$
(e) (RL circuit) $L \frac{d I(t)}{d t}+R I(t)=V_{0} \sin \omega t, I(0)=0$
3. (Mathematical Economics: Maximaizing Profit) Let $u(t)$ denote revenue of a businees at t. Assume that the growth rate of revenue is proportional to revenue. This is a reasonale assumption because more money can be invested in the business as revenue grows. Consequently we obtain the differential equation

$$
\begin{equation*}
\frac{d u}{d t}=a u, u(0)=u_{0} \tag{1}
\end{equation*}
$$

whose solution is $u(t)=u_{0} e^{a t}$ i.e. the revenue growth is exponential. However this model is not realistic as there is no return of profit. The most important purpose of a business is of course growing profit. Hence the model (1) is modified to

$$
\begin{equation*}
\frac{d u}{d t}=a u-\frac{d p}{d t}, u(0)=u_{0} \tag{2}
\end{equation*}
$$

where $p=p(t)$ is profit at t. It is also reasonable to assume that the growth rate of profit is proportional to revenue. Consequently we obtain the differential equation

$$
\begin{equation*}
\frac{d p}{d t}=k u, p(0)=0 \tag{3}
\end{equation*}
$$

$p(0)=0$ happens when, for instance, the entire intial revenue is used to cover the initial investment and other cost of business. The revenue model in (2) then turns into

$$
\begin{equation*}
\frac{d u}{d t}=a(1-k) u, u(0)=u_{0} \tag{4}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
u(t)=u_{0} e^{a(1-k) t} \tag{5}
\end{equation*}
$$

(a) Using (5) show that

$$
\begin{equation*}
p(t)=\frac{k u_{0}}{a(1-k)}\left[e^{a(1-k) t}-1\right] \tag{6}
\end{equation*}
$$

It is an interesting question to consider for What values of k the business must choose in order to maximize $p(t)$ in (6). If $k=0$, the revenue grows expeonentially as we have seen but thre is no profit. If $k=1$, there is no revenue growth as all revenue returns to profit.
(b) For large $t, p(t)$ in (6) can be approximated as

$$
p(t) \approx \frac{k u_{0} e^{a(1-k) t}}{a(1-k)}
$$

What would be the value of k that maximizes $p(t)$ for fixed t ? Will there be only one such k value?
(c) Show that for small $t p(t)$ in (6) can be approximated as

$$
p(t) \approx k u_{0}\left[t+\frac{a(1-k)}{2} t^{2}\right]
$$

What would be the value of k that maximizes $p(t)$ for fixed t ? Also show that $k=1$ until t reaches a certain point in time.
(Torricelli's Law) Suppose that a water tank has a hole with area a at its bottom and that water is draining from the hole. Denote by $y(t)$ the depth (in feet) of water in the tank at time t (in seconds) and by $V(t)$ the volume of water (in cubic feet) in the tank. Then the velocity of the stream of water exiting through the hole is

$$
v=\sqrt{2 g y}\left(g \approx 32 \mathrm{ft} / \mathrm{sec}^{2}\right) .
$$

This is Torricelli's law of draining. The amount of water that leaves through the bottom hole during a short time interval $d t$ amounts to a cylinder with base area a and height $v d t$. Hence, the resulting change $d V$ in the volume of water in the tank is given by

$$
\begin{equation*}
d V=-a v d t=-a \sqrt{2 g y} d t . \tag{7}
\end{equation*}
$$

On the other hand if $A(y)$ denotes the horizontal cross-sectional area of the tank at height y above the hole, then

$$
\begin{equation*}
d V=A(y) d y . \tag{8}
\end{equation*}
$$

Comparing equations (7) and (8), we see that $y(t)$ satisfies the differential equation

$$
\begin{equation*}
A(y) \frac{d y}{d t}=-a \sqrt{2 g y} . \tag{9}
\end{equation*}
$$

4. A hemispherical tank has top radius 4 ft and, at time $t=0$, is full of water. At that moment a circular hole of diameter 1 in . is opened in the bottom of the tank. How long will it take for all the water to drain from the tank? Use the differential equation (9).

Figure 1: Hemispherical water tank
5. (Which is Faster, Going Up or Coming Down?) Suppose you throw a ball into the air. Do you think it takes longer to reach its maximum height or to fall back to Earth from its maximum height?
(a) A ball with mass m is projected vertically upward from Earth's surface with an initial velocity v_{0}. Assume the forces acting on the ball are the force of gravity and a retarding force of air resistence with direction opposite to the direction of motion and with the magnitude $p|v(t)|$, where p is a positive constant and $v(t)$ is the velocity of the ball at time t. In both the ascent and the descent, the total force acting on the ball is $-p v-$ $m g$. (During ascent, $v(t)$ is positive and the resistance acts downward; during descent, $v(t)$ is negativeand the resistence acts upward.) So, by Newton's Second Law, the equation of motion is

$$
m \frac{d v}{d t}=-p v-m g
$$

Solve this differential equation to show that the velocity is

$$
v(t)=\left(v_{0}+\frac{m g}{p}\right) e^{-p t / m}-\frac{m g}{p} .
$$

(b) Show that the height of the ball, until it hits the ground, is

$$
h(t)=\left(v_{0}+\frac{m g}{p}\right) \frac{m}{p}\left(1-e^{-p t / m}\right)-\frac{m g t}{p} .
$$

(c) Let t_{1} be the time that the ball takes to reach its maximum height. Show that

$$
t_{1}=\frac{m}{p} \ln \left(\frac{m g+p v_{0}}{m g}\right) .
$$

Find this time for a ball with mass 1 kg and initial velocity 20 $\mathrm{m} / \mathrm{sec}$. Assume the air resistence is $\frac{1}{10}$ of the speed.
(d) Let t_{2} be the time at which the ball falls back to Earth. For the particular ball in part (c), estimate t_{2} by using a graph of the height function $h(t)$. Which is faster, going up or coming down?
(e) In general, it's not easy to find t_{2} because it's impossible to solve the equation $h(t)=0$ explicitly. We can, however, use an indirect method to determine whether ascent or descent is faster; we determine whether $h\left(2 t_{1}\right)$ is positive or negative. Show that

$$
h\left(2 t_{1}\right)=\frac{m^{2} g}{p^{2}}\left(x-\frac{1}{x}-2 \ln x\right),
$$

where $x=e^{p t_{1} / m}$. Then show that $x>1$ and the function

$$
f(x)=x-\frac{1}{x}-2 \ln x
$$

is increasing for $x>1$. Use this result to decide whether $h\left(2 t_{1}\right)$ is positive or negative. What can you conclude? Is ascent or descent faster?

