FUNCTIONS OF A COMPLEX VARIABLE
PROBLEM SET 5: RESIDUES, CAUCHY’S RESIDUE THEOREM

(1) In each case write the principal part of the function at its
isolated singularity. Determine if that point is a pole, an
essential singularity, or a removable singularity of the given
functiorll.
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(2) Show that all the singularities of each of the following func-
tions are poles. Determine the order of m of each pole and
the corresponding residue B.
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(3) Evaluate the contour integral
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taken conterclockwise around the circle
(@ |z—2|=2;
(b) |z| =4.
(4) Evaluate the contour integral

dz
2z +4)

taken counterclockwise aroundthe circle
(@ [z] =2;
D) |z+2|=3.
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(5) Let C be the circle |z| = 2 described in the positive sense
and evaluate the contour integral
(a) fc tanzdz;

dz__.
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(6) Use Cauchy’s residue theorem to evaluate the integral of

each function around the circle |z| = 3 in the positive sense:
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(7) Find the value of the integral

f 322 +2
5 dz,
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taken counterclockwise around the circle

(@ [z—2[=2
(b) |z| =4
(8) Find the value of the integral
f dz
2=z +4)
taken counterclockwise around the circle
(@) |z| =2
D) |z+2|=3
(9) Evaluate the integral
cosh rtz dz
c2(z2+1)

where C is the circle |z| = 2, described in the postive sense.



