FUNCTIONS OF A COMPLEX VARIABLE PROBLEM SET 2: CAUCHY-RIEMANN CONDITIONS, HARMONIC FUNCTIONS

(1) Suppose that $f(z)=x^{2}-y^{2}-2 y+i(2 x-2 x y)$, where $z=x+i y$. Use the expressions

$$
x=\frac{z+\bar{z}}{2} \text { and } y=\frac{z-\bar{z}}{2 i}
$$

to write $f(z)$ in terms of z, and simplify the result.
(2) Show whether or not $f(z)=\operatorname{Re} z=x$ is analytic.
(3) Verify that each of the following functions is entire.
(a) $f(z)=3 x+y+i(3 y-x)$
(b) $f(z)=\sin x \cosh y+i \cos x \sinh y$
(4) Two-dimensional fluid flow can be described by a complex function $f(z)=u(x, y)+i v(x, y)$. Label the real part $u(x, y)$, the velocity potential and the imaginary part $v(x, y)$, the stream function. The fluid velocity \mathbf{V} is given by $\mathbf{V}=\nabla u$. If $f(z)$ is analytic, show that
(a) $\frac{d f}{d z}=V_{x}-i V_{y}$,
(b) $\nabla \cdot \mathrm{V}=0$ (i.e. no source or sinks),
(c) $\nabla \times V=0$ (i.e. irrotational, nonturbulent flow).
(5) Show that each of the following functions is nowhere analytic.
(a) $f(z)=x y+i y$
(b) $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$
(6) Suppose that a function $f(z)=u(x, y)+i v(x, y)$ and its conjugate $\overline{f(z)}=u(x, y)-i v(x, y)$ are both analytic in a given domain D. Show that $f(z)$ must be constant throughout D.
(7) Suppose that $f(z)=x^{2}-y^{2}-2 y+i(2 x-2 x y)$, where $z=x+i y$. Use the expressions

$$
x=\frac{z+\bar{z}}{2} \text { and } y=\frac{z-\bar{z}}{2 i}
$$

to write $f(z)$ in terms of z, simplify the result.
(8) Show whether or not $f(z)=\operatorname{Re} z=x$ is analytic.
(9) Show that $u(x, y)$ is harmonic in some domain and find a harmonic conjugate $v(x, y)$ when
(a) $u(x, y)=2 x-x^{3}+3 x y^{2}$
(b) $u(x, y)=\sinh x \sin y$
(c) $u(x, y)=\frac{y}{x^{2}+y^{2}}$
(10) Find the analytic functions

$$
f(z)=u(x, y)+i v(x, y)
$$

if
(a) $u(x, y)=x^{3}-3 x y^{2}$,
(b) $v(x, y)=e^{-y} \sin x$.

